Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 1-7

https://doi.org/10.14712/fb2025071010001

Selected Genetic Characteristics of the Vietnamese Minority Living in the Czech Republic

Khanh Ha Pham1,2ID, Jaroslav A. Hubáček1,3ID

13rd Department of Medicine – Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
2Thomayer University Hospital, Prague, Czech Republic
3 Experimental Medicine Centre, Institute of Clinical and Experimental Medicine, Prague, Czech Republic

Received November 2024
Accepted February 2025

References

1. Anguita-Ruiz, A., Aguilera, C. M., Gil, Á. (2020) Genetics of lactose intolerance: an updated review and online interactive world maps of phenotype and genotype frequencies. Nutrients 12, 2689. <https://doi.org/10.3390/nu12092689>
2. Barton, J. C., Edwards, C. Q., Acton, R. T. (2015) HFE gene: structure, function, mutations, and associated iron abnormalities. Gene 574, 179-192. <https://doi.org/10.1016/j.gene.2015.10.009>
3. Belloy, M. E., Andrews, S. J., Le Guen, Y. et al. (2023) APOE genotype and Alzheimer disease risk across age, sex, and population ancestry. JAMA Neurol. 80, 1284-1294. <https://doi.org/10.1001/jamaneurol.2023.3599>
4. Bennett, A. M., Di Angelantonio, E., Ye, Z. et al. (2007) Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 298, 1300-1311. <https://doi.org/10.1001/jama.298.11.1300>
5. Blum, C. B. (2016) Type III hyperlipoproteinemia: still worth considering? Prog. Cardiovasc. Dis. 59, 119-124. <https://doi.org/10.1016/j.pcad.2016.07.007>
6. Brittain, H. K., Scott, R., Thomas, E. (2017) The rise of the genome and personalised medicine. Clin. Med. (Lond.) 17, 545-551. <https://doi.org/10.7861/clinmedicine.17-6-545>
7. Budreviciute, A., Damiati, S., Sabir, D. K. et al. (2020) Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. Front. Public Health 8, 574111. <https://doi.org/10.3389/fpubh.2020.574111>
8. Chan, J. C., Malik, V., Jia, W. et al. (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129-2140. <https://doi.org/10.1001/jama.2009.726>
9. Cífková, R., Bruthans, J., Wohlfahrt, P. et al. (2020) 30-year trends in major cardiovascular risk factors in the Czech population, Czech MONICA and Czech post-MONICA, 1985 – 2016/17. PloS One 15, e0232845. <https://doi.org/10.1371/journal.pone.0232845>
10. Corbo, R. M., Scacchi, R. (1999) Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? Ann. Hum. Genet. 63, 301-310. <https://doi.org/10.1046/j.1469-1809.1999.6340301.x>
11. Day, F. R., Loos, R. J. (2011) Developments in obesity genetics in the era of genome-wide association studies. J. Nutrigenet. Nutrigenomics 4, 222-238.
12. Del Bosque-Plata, L., Martínez-Martínez, E., Espinoza-Camacho, M. Á. et al. (2021) The role of TCF7L2 in type 2 diabetes. Diabetes 70, 1220-1228. <https://doi.org/10.2337/db20-0573>
13. Edenberg, H. J., McClintick, J. N. (2018) Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review. Alcohol Clin. Exp. Res. 42, 2281-2297. <https://doi.org/10.1111/acer.13904>
14. Enoch, M. A., Goldman, D. (2001) The genetics of alcoholism and alcohol abuse. Curr. Psychiatry Rep. 3, 144-151. <https://doi.org/10.1007/s11920-001-0012-3>
15. Feder, J. N., Gnirke, A., Thomas, W. et al. (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399-408. <https://doi.org/10.1038/ng0896-399>
16. Frayling, T. M., Timpson, N. J., Weedon, M. N. et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889-894. <https://doi.org/10.1126/science.1141634>
17. Galuška, D., Dlouhá, L., Hubáček, J. A. et al. (2022) Genetics of T2DM and its chronic complications: are we any closer to the individual prediction of genetic risk? Folia Biol. (Praha) 68, 159-179. <https://doi.org/10.14712/fb2022068050159>
18. GBD 2019 Viewpoint Collaborators (2020) Five insights from the Global Burden of Disease Study 2019. Lancet 396, 1135-1159.
19. Gerken, T., Girard, C. A., Tung, Y. C. et al. (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469-1472. <https://doi.org/10.1126/science.1151710>
20. Gloyn, A. L., Braun, M., Rorsman, P. (2009) Type 2 diabetes susceptibility gene TCF7L2 and its role in β-cell function. Diabetes 58, 800-802. <https://doi.org/10.2337/db09-0099>
21. Hoang, Y. T. T, Nguyen, Y. T., Nguyen, H. D. et al. (2022) Single nucleotide polymorphisms of ADH1B, ADH1C and ALDH2 genes in 235 people living in Thai Nguyen province of Vietnam. Asian Pac. J. Cancer Prev. 23, 4243-4251. <https://doi.org/10.31557/APJCP.2022.23.12.4243>
22. Hubacek, J. A., Pitha, J., Adamkova, V. et al. (2009) A common variant in the FTO gene is associated with body mass index in males and postmenopausal females but not in premenopausal females. Czech post-MONICA and 3PMFs studies. Clin. Chem. Lab. Med. 47, 387-390. <https://doi.org/10.1515/CCLM.2009.109>
23. Hubacek, J. A., Viklicky, O., Dlouha, D. et al. (2012) The FTO gene polymorphism is associated with end-stage renal disease: two large independent case-control studies in a general population. Nephrol. Dial. Transplant. 27, 1030-1035. <https://doi.org/10.1093/ndt/gfr418>
24. Hubáček, J. A., Adámková, V., Šedová, L. et al. (2017) Frequency of adult type-associated lactase persistence LCT-13910C/T genotypes in the Czech/Slav and Czech Roma/Gypsy populations. Genet. Mol. Biol. 40, 450-452. <https://doi.org/10.1590/1678-4685-gmb-2016-0071>
25. Hubacek, J. A., Dlouha, L., Adamkova, V. et al. (2023a) Genetic risk score is associated with T2DM and diabetes complications risks. Gene 849, 146921. <https://doi.org/10.1016/j.gene.2022.146921>
26. Hubacek, J. A., Philipp, T., Adamkova, V. et al. (2023b) A haemochromatosis-causing HFE mutation is associated with SARS-CoV-2 susceptibility in the Czech population. Clin. Chim. Acta 538, 211-215. <https://doi.org/10.1016/j.cca.2022.12.025>
27. Hubacek, J. A., Capkova, N., Bobak, M. et al. (2024) Association between FTO polymorphism and COVID-19 mortality among older adults: a population-based cohort study. Int. J. Infect. Dis. 148, 107232. <https://doi.org/10.1016/j.ijid.2024.107232>
28. Hughes, A. O., Fenton, S., Hine, C. E. et al. (1995) Strategies for sampling black and ethnic minority populations. J. Public Health Med. 17, 187-192. Erratum in: J. Public Health Med. 1995; 17, 375. <https://doi.org/10.1093/oxfordjournals.pubmed.a043091>
29. Jabandziev, P., Hubacek, J. A., Michalek, J. et al. (2024) A tagging polymorphism in fat mass and obesity-associated (FTO) gene is associated with sepsis status in children. Rom. J. Intern. Med. 62, 279-285.
30. Jia, G., Fu, Y., Zhao, X. et al. (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885-887. Erratum in: Nat. Chem. Biol. 2012; 8,1008. <https://doi.org/10.1038/nchembio.687>
31. Kalantari, N., Doaei, S., Keshavarz-Mohammadi, N. et al. (2016) Review of studies on the fat mass and obesity-associated (FTO) gene interactions with environmental factors affecting on obesity and its impact on lifestyle interventions. ARYA Atheroscler. 12, 281-290.
32. Khalil, Y. A., Rabès, J. P., Boileau, C. et al. (2021) APOE gene variants in primary dyslipidemia. Atherosclerosis 328, 11-22. <https://doi.org/10.1016/j.atherosclerosis.2021.05.007>
33. Khoury, M. J., Bowen, S., Dotson, W. D. et al. (2022) Health equity in the implementation of genomics and precision medicine: a public health imperative. Genet. Med. 24, 1630-1639. <https://doi.org/10.1016/j.gim.2022.04.009>
34. Li, W., Zhang, Y., He, Y. et al. (2019) Candidate gene prioritization for non-communicable diseases based on functional information: case studies. J. Biomed. Inform. 93, 103155. <https://doi.org/10.1016/j.jbi.2019.103155>
35. Li, Y., Su, R., Deng, X. et al. (2022) FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8, 598-614. <https://doi.org/10.1016/j.trecan.2022.02.010>
36. Mahmoud, R., Kimonis, V., Butler, M. G. (2022) Genetics of obesity in humans: a clinical review. Int. J. Mol. Sci. 23, 11005. <https://doi.org/10.3390/ijms231911005>
37. Ng, M. C., Park, K. S., Oh, B. et al. (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57, 2226-2233. <https://doi.org/10.2337/db07-1583>
38. Pointon, J. J., Viprakasit, V., Miles, K. L. et al. (2003) Hemochromatosis gene (HFE) mutations in South East Asia: a potential for iron overload. Blood Cells Mol. Dis. 30, 302-306. <https://doi.org/10.1016/S1079-9796(03)00041-X>
39. Qi, Q., Kilpeläinen, T. O., Downer, M. K. et al. (2014) FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals. Hum. Mol. Genet. 23, 6961-6972. <https://doi.org/10.1093/hmg/ddu411>
40. Rynekrova, J., Kasparova, D., Adamkova, V. et al. (2012) Analysis of the potential role of apolipoprotein E polymorphism in genetic predisposition to spontaneous abortion. Am. J. Reprod. Immunol. 67, 179-183. <https://doi.org/10.1111/j.1600-0897.2011.01071.x>
41. Šedová, L., Tóthová, V., Olišarová, V. et al. (2015) Evaluation of selected indicators of overweight and obesity of Roma minority in the region of South Bohemia. Neuro Endocrinol. Lett. 36 (Suppl. 2), 35-42.
42. Ségurel, L., Bon, C. (2017) On the evolution of lactase persistence in humans. Annu. Rev. Genomics Hum. Genet, 18, 297-319. <https://doi.org/10.1146/annurev-genom-091416-035340>
43. Simon, M., Brissot, P. (1988) The genetics of haemochromatosis. J. Hepatol. 6, 116-124. <https://doi.org/10.1016/S0168-8278(88)80471-9>
44. Singh, V. (2023) Current challenges and future implications of exploiting the omics data into nutrigenetics and nutrigenomics for personalized diagnosis and nutrition-based care. Nutrition 110, 112002. <https://doi.org/10.1016/j.nut.2023.112002>
45. Spracklen, C. N., Horikoshi, M., Kim, Y. J. et al. (2020) Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 582, 240-245. <https://doi.org/10.1038/s41586-020-2263-3>
46. Xi, B., Chandak, G. R., Shen, Y. et al. (2012) Association between common polymorphism near the MC4R gene and obesity risk: a systematic review and meta-analysis. PloS One 7, e45731. <https://doi.org/10.1371/journal.pone.0045731>
47. Xu, Z. Y., Jing, X., Xiong, X. D. (2023) Emerging role and mechanism of the FTO gene in cardiovascular diseases. Biomolecules 13, 850. <https://doi.org/10.3390/biom13050850>
48. Yanasegaran, K., Ng, J. Y. E., Chua, E. W. et al. (2024) Single nucleotide polymorphisms (SNPs) that are associated with obesity and type 2 diabetes among Asians: a systematic review and meta-analysis. Sci. Rep. 14, 20062. <https://doi.org/10.1038/s41598-024-70674-2>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive