Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 18-28

https://doi.org/10.14712/fb2025071010018

Clinical Value and Regulatory Mechanism of miR-767-5p in Colorectal Cancer

Ping Lin1ID, Xiuju Qin2ID, Caiyun Yi3, Man Jiang4, Lili Yi3ID, Yuemian Liang5ID

1Department of General Surgery, Minimally Invasive Surgery Center, Second People’s Hospital of Hunan Province (Hunan Brain Hospital), Changsha, China
2Department of Oncology, No. 971 Navy Hospital of the Chinese People’s Liberation Army, Qingdao, China
3Department of Nursing, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
4Department of Hospice, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
5Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China

Received November 2024
Accepted February 2025

References

1. Agarwal, R., Narayan, J., Bhattacharyya, A. et al. (2017) Gene expression profiling, pathway analysis and subtype classification reveal molecular heterogeneity in hepatocellular carcinoma and suggest subtype specific therapeutic targets. Cancer Genet. 216-217, 37-51. <https://doi.org/10.1016/j.cancergen.2017.06.002>
2. Brouwer, N. P. M., Hugen, N., Nagtegaal, I. D. (2020) More extensive lymphadenectomy in colon cancer; how far are we willing to go for a biomarker? Tech. Coloproctol. 24, 761-764. <https://doi.org/10.1007/s10151-020-02239-0>
3. Feng, Y., Zhang, L., Wu, J. et al. (2019) CircRNA circ_0000190 inhibits the progression of multiple myeloma through modulating miR-767-5p/MAPK4 pathway. J. Exp. Clin. Cancer Res. 38, 54. <https://doi.org/10.1186/s13046-019-1071-9>
4. Garofalo, M., Croce, C. M. (2011) microRNAs: master regulators as potential therapeutics in cancer. Annu. Rev. Pharmacol. Toxicol. 51, 25-43. <https://doi.org/10.1146/annurev-pharmtox-010510-100517>
5. He, B., Zhao, Z., Cai, Q. et al. (2020) miRNA-based biomarkers, therapies, and resistance in cancer. Int. J. Biol. Sci. 16, 2628-2647. <https://doi.org/10.7150/ijbs.47203>
6. Hill, M., Tran, N. (2021) miRNA interplay: mechanisms and consequences in cancer. Dis. Model. Mech. 14, dmm047662. <https://doi.org/10.1242/dmm.047662>
7. Hu, Y., Zhang, Y., Ding, M. et al. (2020) LncRNA LINC00511 acts as an oncogene in colorectal cancer via sponging miR-29c-3p to upregulate NFIA. Onco Targets Ther. 13, 13413-13424. <https://doi.org/10.2147/OTT.S250377>
8. Huang, X., Zhu, X., Yu, Y. et al. (2021) Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett. 501, 66-82. <https://doi.org/10.1016/j.canlet.2020.12.025>
9. Jia, M., Li, Z., Pan, M. et al. (2020) LINC-PINT suppresses the aggressiveness of thyroid cancer by downregulating miR-767-5p to induce TET2 expression. Mol. Ther. Nucleic Acids 22, 319-328. <https://doi.org/10.1016/j.omtn.2020.05.033>
10. Labianca, R., Beretta, G. D., Kildani, B. et al. (2010) Colon cancer. Crit. Rev. Oncol. Hematol. 74, 106-133. <https://doi.org/10.1016/j.critrevonc.2010.01.010>
11. Labianca, R., Nordlinger, B., Beretta, G. D. et al. (2013) Early colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6) vi64-72. <https://doi.org/10.1093/annonc/mdt354>
12. Lee, R. C., Feinbaum, R. L., Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854. <https://doi.org/10.1016/0092-8674(93)90529-Y>
13. Li, B., Cao, Y., Sun, M. et al. (2021) Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. Faseb J. 35, e21916.
14. Long, F., Tian, L., Chai, Z. et al. (2022) Identification of stage-associated exosome miRNAs in colorectal cancer by improved robust and corroborative approach embedded miRNA-target network. Front. Med. (Lausanne) 9, 881788. <https://doi.org/10.3389/fmed.2022.881788>
15. Longo, W. E., Johnson, F. E. (2002) The preoperative assessment and postoperative surveillance of patients with colon and rectal cancer. Surg. Clin. North Am. 82, 1091-1108. <https://doi.org/10.1016/S0039-6109(02)00050-6>
16. Manikantan, K., Sayed, S. I., Syrigos, K. N. et al. (2009) Challenges for the future modifications of the TNM staging system for head and neck cancer: case for a new computational model? Cancer Treat. Rev. 35, 639-644. <https://doi.org/10.1016/j.ctrv.2009.04.010>
17. Mo, W. Y., Cao, S. Q. (2023) MiR-29a-3p: a potential biomarker and therapeutic target in colorectal cancer. Clin. Transl. Oncol. 25, 563-577. <https://doi.org/10.1007/s12094-022-02978-6>
18. Pan, Y., Qin, J., Sun, H. et al. (2020) MiR-485-5p as a potential biomarker and tumour suppressor in human colorectal cancer. Biomark. Med. 14, 239-248. <https://doi.org/10.2217/bmm-2019-0534>
19. Pourdavoud, P., Pakzad, B., Mosallaei, M. et al. (2020) MiR-196: emerging of a new potential therapeutic target and biomarker in colorectal cancer. Mol. Biol. Rep. 47, 9913-9920. <https://doi.org/10.1007/s11033-020-05949-8>
20. Saliminejad, K., Khorram Khorshid, H. R., Soleymani Fard, S. et al. (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 234, 5451-5465. <https://doi.org/10.1002/jcp.27486>
21. Song, D., Zhang, Q., Zhang, H. et al. (2022) MiR-130b-3p promotes colorectal cancer progression by targeting CHD9. Cell Cycle 21, 585-601. <https://doi.org/10.1080/15384101.2022.2029240>
22. Tomasello, G., Petrelli, F., Ghidini, M. et al. (2017) FOLFOXIRI plus bevacizumab as conversion therapy for patients with initially unresectable metastatic colorectal cancer: a systematic review and pooled analysis. JAMA Oncol. 3, e170278. <https://doi.org/10.1001/jamaoncol.2017.0278>
23. Wang, F., Wang, X., Li, J. et al. (2021) CircNOL10 suppresses breast cancer progression by sponging miR-767-5p to regulate SOCS2/JAK/STAT signaling. J. Biomed. Sci. 28, 4. <https://doi.org/10.1186/s12929-020-00697-0>
24. Wang, Z., Su, M., Xiang, B. et al. (2019) Circular RNA PVT1 promotes metastasis via miR-145 sponging in CRC. Biochem. Biophys. Res. Commun. 512, 716-722. <https://doi.org/10.1016/j.bbrc.2019.03.121>
25. Wu, X., Chen, H., Zhang, G. et al. (2019) MiR-212-3p inhibits cell proliferation and promotes apoptosis by targeting nuclear factor IA in bladder cancer. J. Biosci. 44, 80. <https://doi.org/10.1007/s12038-019-9903-5>
26. Yang, B., Zhou, Z. H., Chen, L. et al. (2018) Prognostic significance of NFIA and NFIB in esophageal squamous carcinoma and esophagogastric junction adenocarcinoma. Cancer Med. 7, 1756-1765. <https://doi.org/10.1002/cam4.1434>
27. Yu, H., Gao, G., Jiang, L. et al. (2013) Decreased expression of miR-218 is associated with poor prognosis in patients with colorectal cancer. Int. J. Clin. Exp. Pathol. 6, 2904-2911.
28. Yuan, Y., Ren, W., Zhu, J. et al. (2023) Novel applications of histopathological markers to distinguish prognostic subgroups in colorectal adenocarcinoma. Ann. Med. 55, 2244181. <https://doi.org/10.1080/07853890.2023.2244181>
29. Zhang, H., Zhang, G., Zhang, F. et al. (2022) LINC00958 may be a new prognostic biomarker in various cancers: a meta-analysis and bioinformatics analysis. Front. Genet. 13, 998442. <https://doi.org/10.3389/fgene.2022.998442>
30. Zhang, J., Xu, S., Xu, J. et al. (2019) miR‑767‑5p inhibits glioma proliferation and metastasis by targeting SUZ12. Oncol. Rep. 42, 55-66.
31. Zhang, L., Geng, Z., Wan, Y. et al. (2020) Functional analysis of miR-767-5p during the progression of hepatocellular carcinoma and the clinical relevance of its dysregulation. Histochem. Cell Biol. 154, 231-243. <https://doi.org/10.1007/s00418-020-01878-6>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive