Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 29-43

https://doi.org/10.14712/fb2025071010029

miR-4478 Promotes Ferroptosis of Nucleus Pulposus Cells through Targeting SLC7A11 to Induce IVDD

Dongliang Gong1, Long Jia1, Yuhang Wang2, Chengwei Xu2, Xuxing Sun2, Xiao Wu1ID, Xiaojun Han1ID

1Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
2School of Clinical Medicine, Bengbu Medical University, Bengbu, China

Received December 2024
Accepted March 2025

References

1. Ashrafizadeh, M. (2024) Cell death mechanisms in human cancers: molecular pathways, therapy resistance and therapeutic perspective. Journal of Cancer Biomoleculars and Therapeutics 1, 17-40. <https://doi.org/10.62382/jcbt.v1i1.13>
2. Bogdan, A. R., Miyazawa, M., Hashimoto, K. et al. (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem. Sci. 41, 274-286. <https://doi.org/10.1016/j.tibs.2015.11.012>
3. Cazzanelli, P., Wuertz-Kozak, K. (2020) MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology. Int. J. Mol. Sci. 21, 3601. <https://doi.org/10.3390/ijms21103601>
4. Chen, J., Yang, X., Feng, Y. et al. (2022) Targeting ferroptosis holds potential for intervertebral disc degeneration therapy. Cells 11, 3508. <https://doi.org/10.3390/cells11213508>
5. Chen, X., Li, J., Kang, R. et al. (2021) Ferroptosis: machinery and regulation. Autophagy 17, 2054-2081. <https://doi.org/10.1080/15548627.2020.1810918>
6. Cheung, K. M., Karppinen, J., Chan, D. et al. (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 34, 934-940. <https://doi.org/10.1097/BRS.0b013e3181a01b3f>
7. Conrad, M., Kagan, V. E., Bayir, H. et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32, 602-619. <https://doi.org/10.1101/gad.314674.118>
8. Cui, S., Liu, X., Liu, Y. et al. (2023) Autophagosomes defeat ferroptosis by decreasing generation and increasing discharge of free Fe2+ in skin repair cells to accelerate diabetic wound healing. Adv. Sci. (Weinh.) 10, e2300414.
9. Dixon, S. J., Lemberg, K. M., Lamprecht, M. R. et al. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. <https://doi.org/10.1016/j.cell.2012.03.042>
10. Dodson, M., Castro-Portuguez, R., Zhang, D. D. (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23, 101107. <https://doi.org/10.1016/j.redox.2019.101107>
11. Doll, S., Proneth, B., Tyurina, Y. Y. et al. (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91-98. <https://doi.org/10.1038/nchembio.2239>
12. Fratta Pasini, A. M., Stranieri, C., Busti, F. et al. (2023) New insights into the role of ferroptosis in cardiovascular diseases. Cells 12, 867. <https://doi.org/10.3390/cells12060867>
13. Fu, C., Wu, Y., Liu, S. et al. (2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J. Ethnopharmacol. 289, 115021. <https://doi.org/10.1016/j.jep.2022.115021>
14. Galaris, D., Barbouti, A., Pantopoulos, K. (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118535. <https://doi.org/10.1016/j.bbamcr.2019.118535>
15. Han, C., Liu, Y., Dai, R. et al. (2020) Ferroptosis and its potential role in human diseases. Front. Pharmacol. 11, 239. <https://doi.org/10.3389/fphar.2020.00239>
16. Hashemi Goradel, N., Najafi, M., Salehi, E. et al. (2019) Cyclooxygenase-2 in cancer: a review. J. Cell. Physiol. 234, 5683-5699. <https://doi.org/10.1002/jcp.27411>
17. Huang, Q., Sha, W., Gu, Q. et al. (2023) Inhibition of connexin43 improves the recovery of spinal cord injury against ferroptosis via the SLC7A11/GPX4 pathway. Neuroscience 526, 121-134. <https://doi.org/10.1016/j.neuroscience.2023.06.017>
18. Jia, S., Yang, T., Gao, S. et al. (2024) Exosomes from umbilical cord mesenchymal stem cells ameliorate intervertebral disc degeneration via repairing mitochondrial dysfunction. J. Orthop. Translat. 46, 103-115. <https://doi.org/10.1016/j.jot.2023.10.004>
19. Jiang, X., Stockwell, B. R., Conrad, M. (2021) Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266-282. <https://doi.org/10.1038/s41580-020-00324-8>
20. Jin, Y., Qiu, J., Lu, X. et al. (2023) LncRNA CACNA1G-AS1 up-regulates FTH1 to inhibit ferroptosis and promote malignant phenotypes in ovarian cancer cells. Oncol. Res. 31, 169-179. <https://doi.org/10.32604/or.2023.027815>
21. Koppula, P., Zhang, Y., Zhuang, L. et al. (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. (Lond.) 38, 12.
22. Krut, Z., Pelled, G., Gazit, D. et al. (2021) Stem cells and exosomes: new therapies for intervertebral disc degeneration. Cells 10, 2241. <https://doi.org/10.3390/cells10092241>
23. Li, Y., Pan, D., Wang, X. et al. (2022) Silencing ATF3 might delay TBHP-induced intervertebral disc degeneration by repressing NPC ferroptosis, apoptosis, and ECM degradation. Oxid. Med. Cell. Longev. 2022, 4235126.
24. Li, Z., Yu, X., Shen, J. et al. (2015) MicroRNA in intervertebral disc degeneration. Cell Prolif. 48, 278-283. <https://doi.org/10.1111/cpr.12180>
25. Liu, H., Huang, X., Liu, X. et al. (2014) miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling. Int. J. Mol. Sci. 15, 4007-4018. <https://doi.org/10.3390/ijms15034007>
26. Liu, W., Chakraborty, B., Safi, R. et al. (2021) Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat. Commun. 12, 5103. <https://doi.org/10.1038/s41467-021-25354-4>
27. Liu, X., Zhong, S., Qiu, K. et al. (2023) Targeting NRF2 uncovered an intrinsic susceptibility of acute myeloid leukemia cells to ferroptosis. Exp. Hematol. Oncol. 12, 47. <https://doi.org/10.1186/s40164-023-00411-4>
28. Lu, S., Song, Y., Luo, R. et al. (2021) Ferroportin-dependent iron homeostasis protects against oxidative stress-induced nucleus pulposus cell ferroptosis and ameliorates intervertebral disc degeneration in vivo. Oxid. Med. Cell. Longev. 2021, 6670497. <https://doi.org/10.1155/2021/6670497>
29. Lu, Z., Zheng, Z. (2023) Integrated analysis of single-cell and bulk RNA sequencing data identifies the characteristics of ferroptosis in lumbar disc herniation. Funct. Integr. Genomics 23, 289. <https://doi.org/10.1007/s10142-023-01216-8>
30. Nishizawa, H., Matsumoto, M., Shindo, T. et al. (2020) Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J. Biol. Chem. 295, 69-82. <https://doi.org/10.1074/jbc.RA119.009548>
31. Salatino, A., Aversa, I., Battaglia, A. M. et al. (2019) H-Ferritin affects cisplatin-induced cytotoxicity in ovarian cancer cells through the modulation of ROS. Oxid. Med. Cell. Longev. 2019, 3461251. <https://doi.org/10.1155/2019/3461251>
32. Sun, Y., Zhang, W. Li, X. (2021) Induced pluripotent stem cell-derived mesenchymal stem cells deliver exogenous miR-105-5p via small extracellular vesicles to rejuvenate senescent nucleus pulposus cells and attenuate intervertebral disc degeneration. Stem Cell Res. Ther. 12, 286. <https://doi.org/10.1186/s13287-021-02362-1>
33. Tsirimonaki, E., Fedonidis, C., Pneumaticos, S. G. et al. (2013) PKCε signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS One 8, e82045. <https://doi.org/10.1371/journal.pone.0082045>
34. Wu, X., Li, Y., Zhang, S. et al. (2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11, 3052-3059. <https://doi.org/10.7150/thno.54113>
35. Xin, J., Wang, Y., Zheng, Z. et al. (2022) Treatment of intervertebral disc degeneration. Orthop. Surg. 14, 1271-1280. <https://doi.org/10.1111/os.13254>
36. Yang, F., Wang, J., Chen, Z. et al. (2021a) Role of microRNAs in intervertebral disc degeneration (Review). Exp. Ther. Med. 22, 860. <https://doi.org/10.3892/etm.2021.10292>
37. Yang, R. Z., Xu, W. N., Zheng, H. L. et al. (2021b) Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J. Cell. Physiol. 236, 2725-2739. <https://doi.org/10.1002/jcp.30039>
38. Yu, Y., Yan, Y., Niu, F. et al. (2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7, 193. <https://doi.org/10.1038/s41420-021-00579-w>
39. Yuan, H., Li, X., Zhang, X. et al. (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338-1343. <https://doi.org/10.1016/j.bbrc.2016.08.124>
40. Zeng, C., Lin, J., Zhang, K. et al. (2022) SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci. 113, 3766-3775. <https://doi.org/10.1111/cas.15531>
41. Zhang, F., Zhao, X., Shen, H. et al. (2016) Molecular mechanisms of cell death in intervertebral disc degeneration (Review). Int. J. Mol. Med. 37, 1439-1448. <https://doi.org/10.3892/ijmm.2016.2573>
42. Zhang, J., Liu, R., Mo, L. et al. (2023) miR-4478 accelerates nucleus pulposus cells apoptosis induced by oxidative stress by targeting MTH1. Spine (Phila Pa 1976) 48, E54-E69. <https://doi.org/10.1097/BRS.0000000000004486>
43. Zhang, Y., Han, S., Kong, M. et al. (2021) Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthritis Cartilage 29, 1324-1334. <https://doi.org/10.1016/j.joca.2021.06.010>
44. Zielinska, N., Podgórski, M., Haładaj, R. et al. (2021) Risk factors of intervertebral disc pathology – a point of view formerly and today - a review. J. Clin. Med. 10, 409. <https://doi.org/10.3390/jcm10030409>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive