Fol. Biol. 2025, 71, 29-43
https://doi.org/10.14712/fb2025071010029
miR-4478 Promotes Ferroptosis of Nucleus Pulposus Cells through Targeting SLC7A11 to Induce IVDD
References
1. 2024) Cell death mechanisms in human cancers: molecular pathways, therapy resistance and therapeutic perspective. Journal of Cancer Biomoleculars and Therapeutics 1, 17-40.
< , M. (https://doi.org/10.62382/jcbt.v1i1.13>
2. 2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem. Sci. 41, 274-286.
< , A. R., Miyazawa, M., Hashimoto, K. et al. (https://doi.org/10.1016/j.tibs.2015.11.012>
3. 2020) MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology. Int. J. Mol. Sci. 21, 3601.
< , P., Wuertz-Kozak, K. (https://doi.org/10.3390/ijms21103601>
4. 2022) Targeting ferroptosis holds potential for intervertebral disc degeneration therapy. Cells 11, 3508.
< , J., Yang, X., Feng, Y. et al. (https://doi.org/10.3390/cells11213508>
5. 2021) Ferroptosis: machinery and regulation. Autophagy 17, 2054-2081.
< , X., Li, J., Kang, R. et al. (https://doi.org/10.1080/15548627.2020.1810918>
6. 2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 34, 934-940.
< , K. M., Karppinen, J., Chan, D. et al. (https://doi.org/10.1097/BRS.0b013e3181a01b3f>
7. 2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev. 32, 602-619.
< , M., Kagan, V. E., Bayir, H. et al. (https://doi.org/10.1101/gad.314674.118>
8. 2023) Autophagosomes defeat ferroptosis by decreasing generation and increasing discharge of free Fe2+ in skin repair cells to accelerate diabetic wound healing. Adv. Sci. (Weinh.) 10, e2300414.
, S., Liu, X., Liu, Y. et al. (
9. 2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072.
< , S. J., Lemberg, K. M., Lamprecht, M. R. et al. (https://doi.org/10.1016/j.cell.2012.03.042>
10. 2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23, 101107.
< , M., Castro-Portuguez, R., Zhang, D. D. (https://doi.org/10.1016/j.redox.2019.101107>
11. 2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91-98.
< , S., Proneth, B., Tyurina, Y. Y. et al. (https://doi.org/10.1038/nchembio.2239>
12. 2023) New insights into the role of ferroptosis in cardiovascular diseases. Cells 12, 867.
< Pasini, A. M., Stranieri, C., Busti, F. et al. (https://doi.org/10.3390/cells12060867>
13. 2022) Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J. Ethnopharmacol. 289, 115021.
< , C., Wu, Y., Liu, S. et al. (https://doi.org/10.1016/j.jep.2022.115021>
14. 2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118535.
< , D., Barbouti, A., Pantopoulos, K. (https://doi.org/10.1016/j.bbamcr.2019.118535>
15. 2020) Ferroptosis and its potential role in human diseases. Front. Pharmacol. 11, 239.
< , C., Liu, Y., Dai, R. et al. (https://doi.org/10.3389/fphar.2020.00239>
16. 2019) Cyclooxygenase-2 in cancer: a review. J. Cell. Physiol. 234, 5683-5699.
< Goradel, N., Najafi, M., Salehi, E. et al. (https://doi.org/10.1002/jcp.27411>
17. 2023) Inhibition of connexin43 improves the recovery of spinal cord injury against ferroptosis via the SLC7A11/GPX4 pathway. Neuroscience 526, 121-134.
< , Q., Sha, W., Gu, Q. et al. (https://doi.org/10.1016/j.neuroscience.2023.06.017>
18. 2024) Exosomes from umbilical cord mesenchymal stem cells ameliorate intervertebral disc degeneration via repairing mitochondrial dysfunction. J. Orthop. Translat. 46, 103-115.
< , S., Yang, T., Gao, S. et al. (https://doi.org/10.1016/j.jot.2023.10.004>
19. 2021) Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266-282.
< , X., Stockwell, B. R., Conrad, M. (https://doi.org/10.1038/s41580-020-00324-8>
20. 2023) LncRNA CACNA1G-AS1 up-regulates FTH1 to inhibit ferroptosis and promote malignant phenotypes in ovarian cancer cells. Oncol. Res. 31, 169-179.
< , Y., Qiu, J., Lu, X. et al. (https://doi.org/10.32604/or.2023.027815>
21. 2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. (Lond.) 38, 12.
, P., Zhang, Y., Zhuang, L. et al. (
22. 2021) Stem cells and exosomes: new therapies for intervertebral disc degeneration. Cells 10, 2241.
< , Z., Pelled, G., Gazit, D. et al. (https://doi.org/10.3390/cells10092241>
23. 2022) Silencing ATF3 might delay TBHP-induced intervertebral disc degeneration by repressing NPC ferroptosis, apoptosis, and ECM degradation. Oxid. Med. Cell. Longev. 2022, 4235126.
, Y., Pan, D., Wang, X. et al. (
24. 2015) MicroRNA in intervertebral disc degeneration. Cell Prolif. 48, 278-283.
< , Z., Yu, X., Shen, J. et al. (https://doi.org/10.1111/cpr.12180>
25. 2014) miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling. Int. J. Mol. Sci. 15, 4007-4018.
< , H., Huang, X., Liu, X. et al. (https://doi.org/10.3390/ijms15034007>
26. 2021) Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat. Commun. 12, 5103.
< , W., Chakraborty, B., Safi, R. et al. (https://doi.org/10.1038/s41467-021-25354-4>
27. 2023) Targeting NRF2 uncovered an intrinsic susceptibility of acute myeloid leukemia cells to ferroptosis. Exp. Hematol. Oncol. 12, 47.
< , X., Zhong, S., Qiu, K. et al. (https://doi.org/10.1186/s40164-023-00411-4>
28. 2021) Ferroportin-dependent iron homeostasis protects against oxidative stress-induced nucleus pulposus cell ferroptosis and ameliorates intervertebral disc degeneration in vivo. Oxid. Med. Cell. Longev. 2021, 6670497.
< , S., Song, Y., Luo, R. et al. (https://doi.org/10.1155/2021/6670497>
29. 2023) Integrated analysis of single-cell and bulk RNA sequencing data identifies the characteristics of ferroptosis in lumbar disc herniation. Funct. Integr. Genomics 23, 289.
< , Z., Zheng, Z. (https://doi.org/10.1007/s10142-023-01216-8>
30. 2020) Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J. Biol. Chem. 295, 69-82.
< , H., Matsumoto, M., Shindo, T. et al. (https://doi.org/10.1074/jbc.RA119.009548>
31. 2019) H-Ferritin affects cisplatin-induced cytotoxicity in ovarian cancer cells through the modulation of ROS. Oxid. Med. Cell. Longev. 2019, 3461251.
< , A., Aversa, I., Battaglia, A. M. et al. (https://doi.org/10.1155/2019/3461251>
32. 2021) Induced pluripotent stem cell-derived mesenchymal stem cells deliver exogenous miR-105-5p via small extracellular vesicles to rejuvenate senescent nucleus pulposus cells and attenuate intervertebral disc degeneration. Stem Cell Res. Ther. 12, 286.
< , Y., Zhang, W. Li, X. (https://doi.org/10.1186/s13287-021-02362-1>
33. 2013) PKCε signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS One 8, e82045.
< , E., Fedonidis, C., Pneumaticos, S. G. et al. (https://doi.org/10.1371/journal.pone.0082045>
34. 2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11, 3052-3059.
< , X., Li, Y., Zhang, S. et al. (https://doi.org/10.7150/thno.54113>
35. 2022) Treatment of intervertebral disc degeneration. Orthop. Surg. 14, 1271-1280.
< , J., Wang, Y., Zheng, Z. et al. (https://doi.org/10.1111/os.13254>
36. 2021a) Role of microRNAs in intervertebral disc degeneration (Review). Exp. Ther. Med. 22, 860.
< , F., Wang, J., Chen, Z. et al. (https://doi.org/10.3892/etm.2021.10292>
37. 2021b) Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis. J. Cell. Physiol. 236, 2725-2739.
< , R. Z., Xu, W. N., Zheng, H. L. et al. (https://doi.org/10.1002/jcp.30039>
38. 2021) Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7, 193.
< , Y., Yan, Y., Niu, F. et al. (https://doi.org/10.1038/s41420-021-00579-w>
39. 2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338-1343.
< , H., Li, X., Zhang, X. et al. (https://doi.org/10.1016/j.bbrc.2016.08.124>
40. 2022) SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling. Cancer Sci. 113, 3766-3775.
< , C., Lin, J., Zhang, K. et al. (https://doi.org/10.1111/cas.15531>
41. 2016) Molecular mechanisms of cell death in intervertebral disc degeneration (Review). Int. J. Mol. Med. 37, 1439-1448.
< , F., Zhao, X., Shen, H. et al. (https://doi.org/10.3892/ijmm.2016.2573>
42. 2023) miR-4478 accelerates nucleus pulposus cells apoptosis induced by oxidative stress by targeting MTH1. Spine (Phila Pa 1976) 48, E54-E69.
< , J., Liu, R., Mo, L. et al. (https://doi.org/10.1097/BRS.0000000000004486>
43. 2021) Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration. Osteoarthritis Cartilage 29, 1324-1334.
< , Y., Han, S., Kong, M. et al. (https://doi.org/10.1016/j.joca.2021.06.010>
44. 2021) Risk factors of intervertebral disc pathology – a point of view formerly and today - a review. J. Clin. Med. 10, 409.
< , N., Podgórski, M., Haładaj, R. et al. (https://doi.org/10.3390/jcm10030409>