Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 8-17

https://doi.org/10.14712/fb2025071010008

The Potential Inflammatory Role of IL-6 Signalling in Perturbing the Energy Metabolism Function by Stimulating the Akt-mTOR Pathway in Jurkat T Cells

Abdullah AlghamdiID, Mohammed AlissaID

Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia

Received November 2024
Accepted February 2025

References

1. Abid, H., Ryan, Z. C., Delmotte, P. et al. (2020) Extramyocellular interleukin-6 influences skeletal muscle mitochondrial physiology through canonical JAK/STAT signaling pathways. FASEB J. 34, 14458-14472. <https://doi.org/10.1096/fj.202000965RR>
2. Ando, M., Uehara, I., Kogure, K. et al. (2010) Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3. J. Nippon Med. Sch. 77, 97-105. <https://doi.org/10.1272/jnms.77.97>
3. Ba, X., Huang, Y., Shen, P. et al. (2021) WTD attenuating rheumatoid arthritis via suppressing angiogenesis and modulating the PI3K/AKT/mTOR/HIF-1α pathway. Front. Pharmacol. 12, 696802. <https://doi.org/10.3389/fphar.2021.696802>
4. Berthet, C., Lei, H., Thevenet, J. et al. (2009) Neuroprotective role of lactate after cerebral ischemia. J. Cereb. Blood Flow Metab. 29, 1780-1789. <https://doi.org/10.1038/jcbfm.2009.97>
5. Borsini, A., di Benedetto, M. G., Giacobbe, J. et al. (2020) Pro- and anti-inflammatory properties of interleukin in vitro: relevance for major depression and human hippocampal neurogenesis. Int. J. Neuropsychopharmacol. 23, 738-750. <https://doi.org/10.1093/ijnp/pyaa055>
6. Boyapati, A., Schwartzman, S., Msihid, J. et al. (2020) Association of high serum interleukin-6 levels with severe progression of rheumatoid arthritis and increased treatment response differentiating sarilumab from adalimumab or methotrexate in a post hoc analysis. Arthritis Rheumatol. 72, 1456-1466. <https://doi.org/10.1002/art.41299>
7. Cai, X., Ng, C. P., Jones, O. et al. (2023) Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol. Cell 83, 3904-3920.e7. <https://doi.org/10.1016/j.molcel.2023.09.034>
8. Carey, A. L., Steinberg, G. R., Macaulay, S. L. et al. (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688-2697. <https://doi.org/10.2337/db05-1404>
9. Dienel, G. A. (2019) Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949-1045. <https://doi.org/10.1152/physrev.00062.2017>
10. Dinesh, P., Rasool, M. (2018) Berberine inhibits IL-21/IL-21R mediated inflammatory proliferation of fibroblast-like synoviocytes through the attenuation of PI3K/Akt signaling pathway and ameliorates IL-21 mediated osteoclastogenesis. Cytokine 106, 54-66. <https://doi.org/10.1016/j.cyto.2018.03.005>
11. Du, H., Zhang, X., Zeng, Y. et al. (2019) A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-α induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway. Front. Immunol. 10, 1620. <https://doi.org/10.3389/fimmu.2019.01620>
12. du Plessis, S. S., Agarwal, A., Mohanty, G. et al. (2015) Oxidative phosphorylation versus glycolysis: what fuel do sper­matozoa use? Asian J. Androl. 17, 230-235. <https://doi.org/10.4103/1008-682X.135123>
13. Feng, F. B., Qiu, H. Y. (2018) Effects of artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis. Biomed. Pharmacother. 102, 1209-1220. <https://doi.org/10.1016/j.biopha.2018.03.142>
14. Feng, W., Liu, H., Luo, T. et al. (2017) Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways. Sci. Rep. 7, 41411. <https://doi.org/10.1038/srep41411>
15. Glund, S., Deshmukh, A., Long, Y. C. et al. (2007) Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes 56, 1630-1637. <https://doi.org/10.2337/db06-1733>
16. Hahn-Windgassen, A., Nogueira, V., Chen, C. C. et al. (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081-32089. <https://doi.org/10.1074/jbc.M502876200>
17. Hawse, W. F., Boggess, W. C., Morel, P. A. (2017) TCR signal strength regulates Akt substrate specificity to induce alternate murine Th and T regulatory cell differentiation programs. J. Immunol. 199, 589-597. <https://doi.org/10.4049/jimmunol.1700369>
18. Helge, J. W., Stallknecht, B., Pedersen, B. K. et al. (2003) The effect of graded exercise on IL-6 release and glucose uptake in human skeletal muscle. J. Physiol. 546, 299-305. <https://doi.org/10.1113/jphysiol.2002.030437>
19. Hoffman, J. M., Robinson, R., Greenway, G. et al. (2023) Blockade of interleukin-6 trans-signaling prevents mitochondrial dysfunction and cellular senescence in retinal endothelial cells. Exp. Eye Res. 237, 109721. <https://doi.org/10.1016/j.exer.2023.109721>
20. Hou, D., Zheng, X., Cai, D. et al. (2023) Interleukin-6 facilitates acute myeloid leukemia chemoresistance via mitofusin 1-mediated mitochondrial fusion. Mol. Cancer Res. 21, 1366-1378. <https://doi.org/10.1158/1541-7786.MCR-23-0382>
21. Jeong, J., Kang, I., Kim, Y. et al. (2023) Regulation of c-SMAC formation and AKT-mTOR signaling by the TSG101-IFT20 axis in CD4+ T cells. Cell. Mol. Immunol. 20, 525-539. <https://doi.org/10.1038/s41423-023-01008-x>
22. Jones, S. A. (2005) Directing transition from innate to acquired immunity: defining a role for IL-6. J. Immunol. 175, 3463-3468. <https://doi.org/10.4049/jimmunol.175.6.3463>
23. Khatib-Massalha, E., Bhattacharya, S., Massalha, H. et al. (2020) Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat. Commun. 11, 3547. <https://doi.org/10.1038/s41467-020-17402-2>
24. Lhomme, T., Clasadonte, J., Imbernon, M. et al. (2021) Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J. Clin. Invest. 131, e140521. <https://doi.org/10.1172/JCI140521>
25. Li, X., Wang, Y. (2020) Cinnamaldehyde attenuates the progression of rheumatoid arthritis through down-regulation of PI3K/AKT signaling pathway. Inflammation 43, 1729-1741. <https://doi.org/10.1007/s10753-020-01246-5>
26. Makowski, L., Chaib, M., Rathmell, J. C. (2020) Immunometabolism: from basic mechanisms to translation. Immunol. Rev. 295, 5-14. <https://doi.org/10.1111/imr.12858>
27. Marasco, M. R., Conteh, A. M., Reissaus, C. A. et al. (2018) Interleukin-6 reduces β-cell oxidative stress by linking autophagy with the antioxidant response. Diabetes 67, 1576-1588. <https://doi.org/10.2337/db17-1280>
28. Maurer, M., Bougoin, S., Feferman, T. (2015) IL-6 and Akt are involved in muscular pathogenesis in myasthenia gravis. Acta Neuropathol. Commun. 3, 1. <https://doi.org/10.1186/s40478-014-0179-6>
29. Mitra, A., Raychaudhuri, S. K., Raychaudhuri, S. P. (2012) IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 60, 38-42. <https://doi.org/10.1016/j.cyto.2012.06.316>
30. Nishikai-Yan Shen, T., Kanazawa, S., Kado, M. (2017) Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice. PLoS One 12, e0178232. <https://doi.org/10.1371/journal.pone.0178232>
31. Nowell, M. A., Richards, P. J., Horiuchi, S. et al. (2003) Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J. Immunol. 171, 3202-3209. <https://doi.org/10.4049/jimmunol.171.6.3202>
32. Pucino, V., Bombardieri, M., Pitzalis, C. et al. (2017) Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 47, 14-21. <https://doi.org/10.1002/eji.201646477>
33. Pucino, V., Certo, M., Bulusu, V. et al. (2019) Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30, 1055-1074.e8. <https://doi.org/10.1016/j.cmet.2019.10.004>
34. Pucino, V., Nefla, M., Gauthier, V. et al. (2023) Differential effect of lactate on synovial fibroblast and macrophage effector functions. Front. Immunol. 14, 1183825. <https://doi.org/10.3389/fimmu.2023.1183825>
35. Rigoulet, M., Bouchez, C. L., Paumard, P. et al. (2020) Cell energy metabolism: an update. Biochim. Biophys. Acta Bioenerg. 1861, 148276. <https://doi.org/10.1016/j.bbabio.2020.148276>
36. Shoda, H., Nagafuchi, Y., Tsuchida, Y. (2017) Increased serum concentrations of IL-1 beta, IL-21 and Th17 cells in overweight patients with rheumatoid arthritis. Arthritis Res. Ther. 19, 111. <https://doi.org/10.1186/s13075-017-1308-y>
37. Taher, M., Leen, W. G., Wevers, R. A. et al. (2016) Lactate and its many faces. Eur. J. Paediatr. Neurol. 20, 3-10. <https://doi.org/10.1016/j.ejpn.2015.09.008>
38. Uciechowski, P., Dempke, W. C. M. (2020) Interleukin-6: a masterplayer in the cytokine network. Oncology 98, 131-137. <https://doi.org/10.1159/000505099>
39. van der Windt, G. J. W., Chang, C. H., Pearce, E. L. (2016) Measuring bioenergetics in T cells using a Seahorse Extracellular Flux Analyzer. Curr. Protoc. Immunol. 113, 3.16b.1-3.16b.14.
40. Vincent, E. E., Elder, D. J., Thomas, E. C. (2011) Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br. J. Cancer 104, 1755-1761. <https://doi.org/10.1038/bjc.2011.132>
41. Yang, T., Peng, J., Shu, Z. et al. (2019) Determination of the membrane transport properties of Jurkat cells with a microfluidic device. Micromachines (Basel) 10, 832. <https://doi.org/10.3390/mi10120832>
42. Zou, Y., Zeng, S., Huang, M. et al. (2017) Inhibition of 6-phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial inflammation and joint destruction in rheumatoid arthritis. Br. J. Pharmacol. 174, 893-908. <https://doi.org/10.1111/bph.13762>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive