Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 55-63

https://doi.org/10.14712/fb2025071020055

Endothelium and Systemic Inflammation in Neonates and Children

Petr Janec1,2ID, Jana Dorňáková3,4, Jan Živný2ID, Jan Janota2,4ID

1Department of Paediatrics, Neonatology Unit, Hospital Most, Most, Czech Republic
2Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
3Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
4Department of Obstetrics and Gynaecology, Neonatal Unit, Motol University Hospital and Second Faculty of Medicine, Charles University, Prague, Czech Republic

Received August 2023
Accepted May 2025

References

1. Amalakuhan, B., Habib, S. A., Mangat, M. et al. (2016) Endothelial adhesion molecules and multiple organ failure in patients with severe sepsis. Cytokine 88, 267-273. <https://doi.org/10.1016/j.cyto.2016.08.028>
2. Annane, D., Bellissant, E., Cavaillon, J. M. (2005) Septic shock. Lancet 365, 63-78. <https://doi.org/10.1016/S0140-6736(04)17667-8>
3. Aupeix, K., Hugel, B., Martin, T. et al. (1997) The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J. Clin. Invest. 99, 1546-1554. <https://doi.org/10.1172/JCI119317>
4. Been, J. V., Debeer, A., van Iwaarden, J. F. et al. (2010) Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia. Pediatr. Res. 67, 83-89. <https://doi.org/10.1203/PDR.0b013e3181c13276>
5. Berka, I., Korček, P., Straňák, Z. (2022) Serial measurement of interleukin-6 enhances chance to exclude early-onset sepsis in very preterm infants. Clin. Pediatr. (Phila) 62, 288-294. <https://doi.org/10.1177/00099228221124672>
6. Berry, M. J. (2019) The heart of the matter: a vascular hypothesis for bronchopulmonary dysplasia. J. Physiol. 597, 991-992. <https://doi.org/10.1113/JP276413>
7. Bhatt, A. J., Pryhuber, G. S., Huyck, H. et al. (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 164 (10 Pt 1), 1971-1980. <https://doi.org/10.1164/ajrccm.164.10.2101140>
8. Borgel, D., Bornstain, C., Reitsma, P. H. et al. (2007) A comparative study of the protein C pathway in septic and nonseptic patients with organ failure. Am. J. Respir. Crit. Care Med. 176, 878-885. <https://doi.org/10.1164/rccm.200611-1692OC>
9. Borjini, N., Sivilia, S., Giuliani, A. et al. (2019) Potential biomarkers for neuroinflammation and neurodegeneration at short and long term after neonatal hypoxic-ischemic insult in rat. J. Neuroinflammation 16, 194. <https://doi.org/10.1186/s12974-019-1595-0>
10. Burger, D., Schock, S., Thompson, C. S. et al. (2013) Microparticles: biomarkers and beyond. Clin. Sci. (Lond) 124, 423-441. <https://doi.org/10.1042/CS20120309>
11. Burk, A. M., Martin, M., Flierl, M. A. et al. (2012) Early complementopathy after multiple injuries in humans. Shock 37, 348-354. <https://doi.org/10.1097/SHK.0b013e3182471795>
12. Burnier, L., Fontana, P., Kwak, B. R. et al. (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb. Haemost. 101, 439-451. <https://doi.org/10.1160/TH08-08-0521>
13. Carter, M. J., Fish, M., Jennings, A. et al. (2020) Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 26, 1701-1707. <https://doi.org/10.1038/s41591-020-1054-6>
14. Chakraborty, R. K., Burns, B. (2022) Systemic inflammatory response syndrome. In: StatPearls [Internet], Treasure Island (FL): StatPearls Publishing.
15. Chalmers, E. A. (2000) Neonatal thrombosis. J. Clin. Pathol. 53, 419-423. <https://doi.org/10.1136/jcp.53.6.419>
16. Colombo, M., Raposo, G., Théry, C. (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255-289. <https://doi.org/10.1146/annurev-cellbio-101512-122326>
17. Cortés, J. S., Losada, P. X., Fernández, L. X. et al. (2021) Interleukin-6 as a biomarker of early-onset neonatal sepsis. Am. J. Perinatol. 38, e338-e346.
18. Davenport, A. P., Hyndman, K. A., Dhaun, N. et al. (2016) Endothelin. Pharmacol. Rev. 68, 357-418. <https://doi.org/10.1124/pr.115.011833>
19. de Stoppelaar, S. F., van ‘t Veer, C., van der Poll, T. (2014) The role of platelets in sepsis. Thromb. Haemost. 112, 666-677.
20. Dogné, S., Flamion, B., Caron, N. (2018) Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler. Thromb. Vasc. Biol. 38, 1427-1439. <https://doi.org/10.1161/ATVBAHA.118.310839>
21. Dragovic, R. A., Gardiner, C., Brooks, A. S. et al. (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7, 780-788. <https://doi.org/10.1016/j.nano.2011.04.003>
22. Faust, S. N., Levin, M., Harrison, O. B. et al. (2001) Dysfunction of endothelial protein C activation in severe meningococcal sepsis. N. Engl. J. Med. 345, 408-416. <https://doi.org/10.1056/NEJM200108093450603>
23. Flori, H. R., Ware, L. B., Glidden, D. et al. (2003) Early elevation of plasma soluble intercellular adhesion molecule-1 in pediatric acute lung injury identifies patients at increased risk of death and prolonged mechanical ventilation. Pediatr. Crit. Care Med. 4, 315-321. <https://doi.org/10.1097/01.PCC.0000074583.27727.8E>
24. Gando, S., Levi, M., Toh, C. H. (2016) Disseminated intravascular coagulation. Nat. Rev. Dis. Primers 2, 16037. <https://doi.org/10.1038/nrdp.2016.37>
25. Gawaz, M., Fateh-Moghadam, S., Pilz, G. et al. (1995) Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur. J. Clin. Invest. 25, 843-851. <https://doi.org/10.1111/j.1365-2362.1995.tb01694.x>
26. Gelderman, M. P., Simak, J. (2008) Flow cytometric analysis of cell membrane microparticles. Methods Mol. Biol. 484, 79-93. <https://doi.org/10.1007/978-1-59745-398-1_6>
27. Gilfillan, M., Bhandari, A., Bhandari, V. (2021) Diagnosis and management of bronchopulmonary dysplasia. BMJ 375, n1974. <https://doi.org/10.1136/bmj.n1974>
28. Goldenberg, N. M., Kuebler, W. M. (2015) Endothelial cell regulation of pulmonary vascular tone, inflammation, and coagulation. Compr. Physiol. 5, 531-559. <https://doi.org/10.1002/j.2040-4603.2015.tb00615.x>
29. Goldstein, B., Giroir, B., Randolph, A. (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 6, 2-8. <https://doi.org/10.1097/01.PCC.0000149131.72248.E6>
30. Greco, P., Nencini, G., Piva, I. et al. (2020) Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol. Belg. 120, 277-288. <https://doi.org/10.1007/s13760-020-01308-3>
31. Greenberg, R. G., Kandefer, S., Do, B. T. et al. (2017) Late-onset sepsis in extremely premature infants: 2000-2011. Pediatr. Infect. Dis. J. 36, 774-779. <https://doi.org/10.1097/INF.0000000000001570>
32. Gu, J. M., Katsuura, Y., Ferrell, G. L. et al. (2000) Endotoxin and thrombin elevate rodent endothelial cell protein C receptor mRNA levels and increase receptor shedding in vivo. Blood 95, 1687-1693. <https://doi.org/10.1182/blood.V95.5.1687.005k08_1687_1693>
33. Guo, M. M., Tseng, W. N., Ko, C. H. et al. (2015) Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy 70, 310-318. <https://doi.org/10.1111/all.12558>
34. Hackam, D., Caplan, M. (2018) Necrotizing enterocolitis: pathophysiology from a historical context. Semin. Pediatr. Surg. 27, 11-18. <https://doi.org/10.1053/j.sempedsurg.2017.11.003>
35. Hackam, D. J., Sodhi, C. P. (2018) Toll-like receptor-mediated intestinal inflammatory imbalance in the pathogenesis of necrotizing enterocolitis. Cell. Mol. Gastroenterol. Hepatol. 6, 229-238.e221. <https://doi.org/10.1016/j.jcmgh.2018.04.001>
36. Hally, K., Fauteux-Daniel, S., Hamzeh-Cognasse, H. et al. (2020) Revisiting platelets and Toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int. J. Mol. Sci. 21, 6150. <https://doi.org/10.3390/ijms21176150>
37. Hansmann, G., Sallmon, H., Roehr, C. C. et al. (2021) Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr. Res. 89, 446-455. <https://doi.org/10.1038/s41390-020-0993-4>
38. Howarth, C., Banerjee, J., Eaton, S. et al. (2022) Biomarkers of gut injury in neonates - where are we in predicting necrotising enterocolitis? Front. Pediatr. 10, 1048322. <https://doi.org/10.3389/fped.2022.1048322>
39. Hromada, C., Mühleder, S., Grillari, J. et al. (2017) Endothelial extracellular vesicles-promises and challenges. Front. Physiol. 8, 275. <https://doi.org/10.3389/fphys.2017.00275>
40. Hwang, J. S., Rehan, V. K. (2018) Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment. Lung 196, 129-138. <https://doi.org/10.1007/s00408-018-0084-z>
41. Inzhutova, A. I., Larionov, A. A., Petrova, M. M. et al. (2012) Theory of intercellular communication in the development of endothelial dysfunction. Bull. Exp. Biol. Med. 153, 201-205. <https://doi.org/10.1007/s10517-012-1676-x>
42. Janec, P., Mojzisek, M., Panek, M. et al. (2023) Early-onset neonatal sepsis: inflammatory biomarkers and microRNA as potential diagnostic tools in preterm newborns. Folia Biol. (Praha) 69, 173-180. <https://doi.org/10.14712/fb2023069050173>
43. Karenberg, K., Hudalla, H., Frommhold, D. (2016) Leukocyte recruitment in preterm and term infants. Mol. Cell. Pediatr. 3, 35. <https://doi.org/10.1186/s40348-016-0063-5>
44. Katneni, U. K., Ibla, J. C., Hunt, R. et al. (2019) von Willebrand factor/ADAMTS-13 interactions at birth: implications for thrombosis in the neonatal period. J. Thromb. Haemost. 17, 429-440. <https://doi.org/10.1111/jth.14374>
45. Kendirli, T., Ince, E., Ciftci, E. et al. (2009) Soluble endothelial protein C receptor level in children with sepsis. Pediatr. Hematol. Oncol. 26, 432-438. <https://doi.org/10.3109/08880010903044870>
46. Kiouptsi, K., Reinhardt, C. (2020) Physiological roles of the von Willebrand factor-factor VIII interaction. Subcell. Biochem. 94, 437-464. <https://doi.org/10.1007/978-3-030-41769-7_18>
47. Kornacki, J., Gutaj, P., Kalantarova, A. et al. (2021) Endothelial dysfunction in pregnancy complications. Biomedicines 9, 1756. <https://doi.org/10.3390/biomedicines9121756>
48. Krishnaswamy, G., Kelley, J., Yerra, L.et al. (1999) Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease. J. Interferon Cytokine Res. 19, 91-104. <https://doi.org/10.1089/107999099314234>
49. Kulkarni, A. A., Osmond, M., Bapir, M. et al. (2013) The effect of labour on the coagulation system in the term neonate. Haemophilia 19, 533-538. <https://doi.org/10.1111/hae.12115>
50. Kurosawa, S., Stearns-Kurosawa, D. J., Carson, C. W. et al. (1998) Plasma levels of endothelial cell protein C receptor are elevated in patients with sepsis and systemic lupus erythematosus: lack of correlation with thrombomodulin suggests involvement of different pathological processes. Blood 91, 725-727. <https://doi.org/10.1182/blood.V91.2.725>
51. Laszik, Z., Mitro, A., Taylor, F. B. et al. (1997) Human protein C receptor is present primarily on endothelium of large blood vessels - implications for the control of the protein C pathway. Circulation 96, 3633-3640. <https://doi.org/10.1161/01.CIR.96.10.3633>
52. Li, S. J., Liu, W., Wang, J. L. et al. (2014) The role of TNF-α, IL-6, IL-10, and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic encephalopathy. Eur. Rev. Med. Pharmacol. Sci. 18, 905-909.
53. Liaw, P. C. Y., Esmon, C. T., Kahnamoui, K., et al. (2004) Patients with severe sepsis vary markedly in their ability to generate activated protein C. Blood 104, 3958-3964. <https://doi.org/10.1182/blood-2004-03-1203>
54. Liaw, P. C. Y., Mather, T., Oganesyan, N. et al. (2000) Identification of the protein C/activated protein C binding domain on the endothelial cell protein C receptor: implications for a novel mode of ligand recognition by an MHC class 1-type receptor. Blood, 96, 813a.
55. McMurray, J. C., May, J. W., Cunningham, M. W. et al. (2020) Multisystem inflammatory syndrome in children (MIS-C), a post-viral myocarditis and systemic vasculitis - a critical review of its pathogenesis and treatment. Front. Pediatr. 8, 626182. <https://doi.org/10.3389/fped.2020.626182>
56. Medina-Leyte, D. J., Zepeda-García, O., Domínguez-Pérez, M. et al. (2021) Endothelial dysfunction, inflammation and coronary artery disease: potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 22, 3850. <https://doi.org/10.3390/ijms22083850>
57. Mezu-Ndubuisi, O. J., Maheshwari, A. (2021) The role of integrins in inflammation and angiogenesis. Pediatr. Res. 89, 1619-1626. <https://doi.org/10.1038/s41390-020-01177-9>
58. Mojzisek, M., Sibikova, M., Panek, M. et al. (2023) Delivery-associated changes in the levels of inflammatory molecules in newborns. Folia Biol. (Praha) 69, 1-5. <https://doi.org/10.14712/fb2023069010001>
59. Molloy, E. J., Nakra, N., Gale, C. et al. (2023) Multisystem inflammatory syndrome in children (MIS-C) and neonates (MIS-N) associated with COVID-19: optimizing definition and management. Pediatr. Res. 93, 1499-1508. <https://doi.org/10.1038/s41390-022-02263-w>
60. Monteiro, A. C. C., Flori, H., Dahmer, M. K. et al. (2021) Thrombomodulin is associated with increased mortality and organ failure in mechanically ventilated children with acute respiratory failure: biomarker analysis from a multicenter randomized controlled trial. Crit. Care 25, 271. <https://doi.org/10.1186/s13054-021-03626-1>
61. Murphy, C. A., O’Reilly, D., Weiss, L. et al. (2025) Unique patterns of circulating extracellular vesicles in preterm infants during adaptation to extra-uterine life. J. Extracell. Vesicles 14, e70064. <https://doi.org/10.1002/jev2.70064>
62. Mwesigye, P., Rizwan, F., Alassaf, N. et al. (2021) The role and validity of diagnostic biomarkers in late-onset neonatal sepsis. Cureus 13, e17065.
63. Nankervis, C. A., Reber, K. M., Nowicki, P. T. (2001) Age-dependent changes in the postnatal intestinal microcirculation. Microcirculation 8, 377-387.
64. Neyrinck, A. P., Liu, K. D., Howard, J. P. et al. (2009) Protective mechanisms of activated protein C in severe inflammatory disorders. Br. J. Pharmacol. 158, 1034-1047. <https://doi.org/10.1111/j.1476-5381.2009.00251.x>
65. Nguyen, T. C., Liu, A., Liu, L. et al. (2007) Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica 92, 121-124. <https://doi.org/10.3324/haematol.10262>
66. Niño, D. F., Sodhi, C. P., Hackam, D. J. (2016) Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 13, 590-600. <https://doi.org/10.1038/nrgastro.2016.119>
67. Nowicki, P. T., Caniano, D. A., Hammond, S. et al. (2007) Endothelial nitric oxide synthase in human intestine resected for necrotizing enterocolitis. J. Pediatr. 150, 40-45. <https://doi.org/10.1016/j.jpeds.2006.09.029>
68. Nussbaum, C., Gloning, A., Pruenster, M. et al. (2013) Neutrophil and endothelial adhesive function during human fetal ontogeny. J. Leukoc. Biol. 93, 175-184. <https://doi.org/10.1189/jlb.0912468>
69. Okike, I. O., Johnson, A. P., Henderson, K. L. et al. (2014) Incidence, etiology, and outcome of bacterial meningitis in infants aged <90 days in the United Kingdom and Republic of Ireland: prospective, enhanced, national population-based surveillance. Clin. Infect. Dis. 59, e150-e157. <https://doi.org/10.1093/cid/ciu514>
70. Orloff, K. E., Turner, D. A., Rehder, K. J. (2019) The current state of pediatric acute respiratory distress syndrome. Pediatr. Allergy Immunol. Pulmonol. 32, 35-44. <https://doi.org/10.1089/ped.2019.0999>
71. Parameswaran, N., Patial, S. (2010) Tumor necrosis factor-α signaling in macrophages. Crit. Rev. Eukaryot. Gene Expr. 20, 87-103. <https://doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.10>
72. Patel, J. M. (2022) Multisystem inflammatory syndrome in children (MIS-C). Curr. Allergy Asthma Rep. 22, 53-60. <https://doi.org/10.1007/s11882-022-01031-4>
73. Petri, B., Bixel, M. G. (2006) Molecular events during leukocyte diapedesis. FEBS J. 273, 4399-4407. <https://doi.org/10.1111/j.1742-4658.2006.05439.x>
74. Pottinger, B. E., Read, R. C., Paleolog, E. M. et al. (1989) von Willebrand factor is an acute phase reactant in man. Thromb. Res. 53, 387-394. <https://doi.org/10.1016/0049-3848(89)90317-4>
75. Rajendran, P., Rengarajan, T., Thangavel, J. et al. (2013) The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057-1069. <https://doi.org/10.7150/ijbs.7502>
76. Ray, B., Mangalore, J., Harikumar, C. et al. (2006) Is lumbar puncture necessary for evaluation of early neonatal sepsis? Arch. Dis. Child. 91, 1033-1035. <https://doi.org/10.1136/adc.2006.105106>
77. Rezaie, P., Dean, A. (2002) Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 22, 106-132. <https://doi.org/10.1046/j.1440-1789.2002.00438.x>
78. Rittirsch, D., Redl, H., Huber-Lang, M. (2012) Role of complement in multiorgan failure. Clin. Dev. Immunol. 2012, 962927. <https://doi.org/10.1155/2012/962927>
79. Romantsik, O., Bruschettini, M., Ley, D. (2019) Intraventricular hemorrhage and white matter injury in preclinical and clinical studies. Neoreviews 20, e636-e652. <https://doi.org/10.1542/neo.20-11-e636>
80. Sahni, M., Yeboah, B., Das, P. et al. (2020) Novel biomarkers of bronchopulmonary dysplasia and bronchopulmonary dysplasia-associated pulmonary hypertension. J. Perinatol. 40, 1634-1643. <https://doi.org/10.1038/s41372-020-00788-8>
81. Schrag, S. J., Farley, M. M., Petit, S. et al. (2016) Epidemiology of invasive early-onset neonatal sepsis, 2005 to 2014. Pediatrics 138, e20162013. <https://doi.org/10.1542/peds.2016-2013>
82. Sibikova, M., Vitkova, V., Jamrichova, L. et al. (2020) Spontaneous delivery is associated with increased endothelial activity in cord blood compared to elective cesarean section. Eur. J. Obstet. Gynecol. Reprod. Biol. 251, 229-234. <https://doi.org/10.1016/j.ejogrb.2020.05.059>
83. Šibíková, M., Živný, J., Janota, J. (2018) Cell membrane-derived microvesicles in systemic inflammatory response. Folia Biol. (Praha) 64, 113-124. <https://doi.org/10.14712/fb2018064040113>
84. Simonsen, K. A., Anderson-Berry, A. L., Delair, S. F. et al. (2014) Early-onset neonatal sepsis. Clin. Microbiol. Rev. 27, 21-47. <https://doi.org/10.1128/CMR.00031-13>
85. Srinivasan, L., Kilpatrick, L., Shah, S. S. et al. (2016) Cerebrospinal fluid cytokines in the diagnosis of bacterial meningitis in infants. Pediatr. Res. 80, 566-572. <https://doi.org/10.1038/pr.2016.117>
86. Stoll, B. J., Hansen, N. I., Sánchez, P. J. et al. (2011) Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics 127, 817-826. <https://doi.org/10.1542/peds.2010-2217>
87. Strauss, T., Elisha, N., Ravid, B. et al. (2017) Activity of von Willebrand factor and levels of VWF-cleaving protease (ADAMTS13) in preterm and full term neonates. Blood Cells Mol. Dis. 67, 14-17. <https://doi.org/10.1016/j.bcmd.2016.12.013>
88. Takahashi, K., Oharaseki, T., Yokouchi, Y. (2014) Update on etio and immunopathogenesis of Kawasaki disease. Curr. Opin. Rheumatol. 26, 31-36. <https://doi.org/10.1097/BOR.0000000000000010>
89. Tanaka, T., Narazaki, M., Kishimoto, T. (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295. <https://doi.org/10.1101/cshperspect.a016295>
90. Toussi, S. S., Pan, N., Walters, H. M. et al. (2013) Infections in children and adolescents with juvenile idiopathic arthritis and inflammatory bowel disease treated with tumor necrosis factor-α inhibitors: systematic review of the literature. Clin. Infect. Dis. 57, 1318-1330. <https://doi.org/10.1093/cid/cit489>
91. van der Pol, E., Böing, A. N., Harrison, P. et al. (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64, 676-705. <https://doi.org/10.1124/pr.112.005983>
92. Veldman, A., Nold, M. F., Michel-Behnke, I. (2008) Thrombosis in the critically ill neonate: incidence, diagnosis, and management. Vasc. Health Risk Manag. 4, 1337-1348.
93. Vieira-de-Abreu, A., Campbell, R. A., Weyrich, A. S. et al. (2012) Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin. Immunopathol. 34, 5-30. <https://doi.org/10.1007/s00281-011-0286-4>
94. Vítková, V., Pánek, M., Janec, P. et al. (2018a) Endothelial microvesicles and soluble markers of endothelial injury in critically ill newborns. Mediators Inflamm. 2018, 1975056. <https://doi.org/10.1155/2018/1975056>
95. Vítková, V., Živný, J., Janota, J. (2018b) Endothelial cell-derived microvesicles: potential mediators and biomarkers of pathologic processes. Biomark. Med. 12, 161-175. <https://doi.org/10.2217/bmm-2017-0182>
96. Ware, L. B., Conner, E. R., Matthay, M. A. (2001) von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Crit. Care Med. 29, 2325-2331. <https://doi.org/10.1097/00003246-200112000-00016>
97. Yoon, B. H., Romero, R., Yang, S. H. et al. (1996) Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am. J. Obstet. Gynecol. 174, 1433-1440. <https://doi.org/10.1016/S0002-9378(96)70585-9>
98. Yuana, Y., Bertina, R. M., Osanto, S. (2011) Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost. 105, 396-408. <https://doi.org/10.1160/TH10-09-0595>
99. Zhang, H., Park, Y., Wu, J. et al. (2009) Role of TNF-α in vascular dysfunction. Clin. Sci. (Lond.) 116, 219-230. <https://doi.org/10.1042/CS20080196>
100. Zonneveld, R., Martinelli, R., Shapiro, N. I. et al. (2014) Soluble adhesion molecules as markers for sepsis and the potential pathophysiological discrepancy in neonates, children and adults. Crit. Care 18, 204. <https://doi.org/10.1186/cc13733>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive