Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 64-72

https://doi.org/10.14712/fb2025071020064

miR-296-3p Controls Osteogenic Proliferation and Differentiation by Targeting ICAT and Is Involved in Fracture Healing

Feng Xu1ID, Kun Huang2ID, Wenjun Ji3, Miao Huang3, Jincheng Sima3, Jin Li3, Hao Song3, Wei Xiong3ID, Zhong Tian4ID

1Department of Orthopedics, The 943rd Hospital, Joint Logistic Support Force of Chinese People’s Liberation Army, Wuwei, China
2Department of Emergency, Nantong Haimen District People’s Hospital, Nantong, China
3Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
4Department of Orthopedics, Chonggang General Hospital, Chongqing, China

Received November 2024
Accepted April 2025

References

1. Abdelmagid, S. M., Belcher, J. Y., Moussa, F. M. et al. (2014) Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. Am. J. Pathol. 184, 697-713. <https://doi.org/10.1016/j.ajpath.2013.11.031>
2. Bäckesjö, C. M., Li, Y., Lindgren, U. et al. (2009) Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs 189, 93-97. <https://doi.org/10.1159/000151744>
3. Blair, H. C., Larrouture, Q. C., Li, Y. et al. (2017) Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev. 23, 268-280. <https://doi.org/10.1089/ten.teb.2016.0454>
4. Chen, J., Yang, Y., Li, S. et al. (2020) E2F1 regulates adipocyte differentiation and adipogenesis by activating ICAT. Cells 9, 1024. <https://doi.org/10.3390/cells9041024>
5. Dimai, H. P., Fahrleitner-Pammer, A. (2022) Osteoporosis and fragility fractures: currently available pharmacological options and future directions. Best Pract. Res. Clin. Rheumatol. 36, 101780. <https://doi.org/10.1016/j.berh.2022.101780>
6. Donsante, S., Palmisano, B., Serafini, M. et al. (2021) From stem cells to bone-forming cells. Int. J. Mol. Sci. 22, 3989. <https://doi.org/10.3390/ijms22083989>
7. Foroutan, T. (2016) Comparison of differentiation of induced pluripotent stem cells and bone-marrow mesenchymal stem cells to osteoblast: osteogenesis versus pluripotency. Int. J. Organ Transplant. Med. 7, 91-96.
8. Iaquinta, M. R., Lanzillotti, C., Mazziotta, C. et al. (2021) The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 11, 6573-6591. <https://doi.org/10.7150/thno.55664>
9. Jiang, Y., Ren, W., Wang, W. et al. (2017) Inhibitor of β-catenin and TCF (ICAT) promotes cervical cancer growth and metastasis by disrupting E-cadherin/β-catenin complex. Oncol. Rep. 38, 2597-2606. <https://doi.org/10.3892/or.2017.5962>
10. Jiménez-Ortega, R. F., Ortega-Meléndez, A. I., Patiño, N. et al. (2024) The involvement of microRNAs in bone remodeling signaling pathways and their role in the development of osteoporosis. Biology (Basel) 13, 505.
11. Kim, Y. J., Kim, J. T., Bae, Y. C. et al. (2008) ICAT participates in proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cell. Life Sci. 83, 851-858. <https://doi.org/10.1016/j.lfs.2008.09.030>
12. Li, D., Yuan, Q., Xiong, L. et al. (2021) The miR-4739/DLX3 axis modulates bone marrow-derived mesenchymal stem cell (BMSC) osteogenesis affecting osteoporosis progression. Front. Endocrinol. (Lausanne) 12, 703167. <https://doi.org/10.3389/fendo.2021.703167>
13. Liang, D., Song, G., Zhang, Z.(2022) miR-216a-3p inhibits osteogenic differentiation of human adipose-derived stem cells via Wnt3a in the Wnt/β-catenin signaling pathway. Exp. Ther. Med. 23, 309. <https://doi.org/10.3892/etm.2022.11238>
14. Lin, S., Li, H., Wu, B. et al. (2022) TGF-β1 regulates chondrocyte proliferation and extracellular matrix synthesis via circPhf21a-Vegfa axis in osteoarthritis. Cell Commun. Signal. 20, 75. <https://doi.org/10.1186/s12964-022-00881-9>
15. Liu, Z., Li, S., Xu, S. et al. (2023) Hsa_Circ_0005044 promotes osteo/odontogenic differentiation of dental pulp stem cell via modulating miR-296-3p/FOSL1. DNA Cell Biol. 42, 14-26. <https://doi.org/10.1089/dna.2022.0394>
16. Long, H., Sun, B., Cheng, L. et al. (2017) miR-139-5p represses BMSC osteogenesis via targeting Wnt/β-catenin signaling pathway. DNA Cell Biol. 36, 715-724. <https://doi.org/10.1089/dna.2017.3657>
17. Ma, Y., Shan, Z., Ma, J. et al. (2016) Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression. Mol. Med. Rep. 13, 2273-2280. <https://doi.org/10.3892/mmr.2016.4765>
18. Narayanan, A., Srinaath, N., Rohini, M. et al. (2019) Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci. 232, 116676. <https://doi.org/10.1016/j.lfs.2019.116676>
19. Papaioannou, G., Mirzamohammadi, F., Kobayashi, T. (2014) MicroRNAs involved in bone formation. Cell. Mol. Life Sci. 71, 4747-4761. <https://doi.org/10.1007/s00018-014-1700-6>
20. Qin, X. B., Wen, K., Wu, X. X. et al. (2021) MiR-183 regulates the differentiation of osteoblasts in the development of osteoporosis by targeting Smad4. Acta Histochem. 123, 151786. <https://doi.org/10.1016/j.acthis.2021.151786>
21. Qiu, T., Li, H., Lu, T. et al. (2022) GATA4 regulates osteogenic differentiation by targeting miR-144-3p. Exp. Ther. Med. 23, 83. <https://doi.org/10.3892/etm.2021.11006>
22. Rinonapoli, G., Ruggiero, C., Meccariello, L. et al. (2021) Osteoporosis in men: a review of an underestimated bone condition. Int. J. Mol. Sci. 22, 2105. <https://doi.org/10.3390/ijms22042105>
23. Sereno, M., Videira, M., Wilhelm, I. et al. (2020) miRNAs in health and disease: a focus on the breast cancer metastatic cascade towards the brain. Cells 9, 1790. <https://doi.org/10.3390/cells9081790>
24. Tian, L., Yang, R., Wei, L. et al. (2017) Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men: a cross-sectional study in Gansu province, northwestern of China. Medicine (Baltimore) 96, e8294. <https://doi.org/10.1097/MD.0000000000008294>
25. Vimalraj, S., Selvamurugan, N. (2013) MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr. Issues Mol. Biol. 15, 7-18.
26. Wang, R., Zhang, M., Hu, Y. et al. (2022) MiR-100-5p inhibits osteogenic differentiation of human bone mesenchymal stromal cells by targeting TMEM135. Hum Cell. 35, 1671-1683. <https://doi.org/10.1007/s13577-022-00764-8>
27. Wang, X., Guo, B., Li, Q. et al. (2013) miR-214 targets ATF4 to inhibit bone formation. Nat. Med. 19, 93-100. <https://doi.org/10.1038/nm.3026>
28. Wei, Z., Zhou, J., Shen, J. et al. (2024) Osteostaticytes: a novel osteoclast subset couples bone resorption and bone formation. J. Orthop. Translat. 47, 144-160. <https://doi.org/10.1016/j.jot.2024.06.010>
29. Zhang, S. Y., Gao, F., Peng, C. G. et al. (2018) miR-485-5p promotes osteoporosis via targeting Osterix. Eur. Rev. Med. Pharmacol. Sci. 22, 4792-4799.
30. Zhao, C., Gu, Y., Wang, Y. et al. (2021) miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration via repressing Dkk3. Stem Cells Int. 2021, 7435605.
31. Zhou, J., Du, G., Fu, H. (2020) miR‑296‑3p promotes the proliferation of glioblastoma cells by targeting ICAT. Mol. Med. Rep. 21, 2151-2161.
32. Zhou, Z., Ma, J., Lu, J. et al. (2021) Circular RNA CircCDH13 contributes to the pathogenesis of osteoarthritis via CircCDH13/miR-296-3p/PTEN axis. J. Cell. Physiol. 236, 3521-3535. <https://doi.org/10.1002/jcp.30091>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive