Fol. Biol. 2025, 71, 64-72
https://doi.org/10.14712/fb2025071020064
miR-296-3p Controls Osteogenic Proliferation and Differentiation by Targeting ICAT and Is Involved in Fracture Healing
References
1. , S. M., Belcher, J. Y., Moussa, F. M. et al. (2014) Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. Am. J. Pathol. 184, 697-713.
<https://doi.org/10.1016/j.ajpath.2013.11.031>
2. , C. M., Li, Y., Lindgren, U. et al. (2009) Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs 189, 93-97.
<https://doi.org/10.1159/000151744>
3. , H. C., Larrouture, Q. C., Li, Y. et al. (2017) Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng. Part B Rev. 23, 268-280.
<https://doi.org/10.1089/ten.teb.2016.0454>
4. , J., Yang, Y., Li, S. et al. (2020) E2F1 regulates adipocyte differentiation and adipogenesis by activating ICAT. Cells 9, 1024.
<https://doi.org/10.3390/cells9041024>
5. , H. P., Fahrleitner-Pammer, A. (2022) Osteoporosis and fragility fractures: currently available pharmacological options and future directions. Best Pract. Res. Clin. Rheumatol. 36, 101780.
<https://doi.org/10.1016/j.berh.2022.101780>
6. , S., Palmisano, B., Serafini, M. et al. (2021) From stem cells to bone-forming cells. Int. J. Mol. Sci. 22, 3989.
<https://doi.org/10.3390/ijms22083989>
7. , T. (2016) Comparison of differentiation of induced pluripotent stem cells and bone-marrow mesenchymal stem cells to osteoblast: osteogenesis versus pluripotency. Int. J. Organ Transplant. Med. 7, 91-96.
8. , M. R., Lanzillotti, C., Mazziotta, C. et al. (2021) The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 11, 6573-6591.
<https://doi.org/10.7150/thno.55664>
9. , Y., Ren, W., Wang, W. et al. (2017) Inhibitor of β-catenin and TCF (ICAT) promotes cervical cancer growth and metastasis by disrupting E-cadherin/β-catenin complex. Oncol. Rep. 38, 2597-2606.
<https://doi.org/10.3892/or.2017.5962>
10. , R. F., Ortega-Meléndez, A. I., Patiño, N. et al. (2024) The involvement of microRNAs in bone remodeling signaling pathways and their role in the development of osteoporosis. Biology (Basel) 13, 505.
11. , Y. J., Kim, J. T., Bae, Y. C. et al. (2008) ICAT participates in proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cell. Life Sci. 83, 851-858.
<https://doi.org/10.1016/j.lfs.2008.09.030>
12. , D., Yuan, Q., Xiong, L. et al. (2021) The miR-4739/DLX3 axis modulates bone marrow-derived mesenchymal stem cell (BMSC) osteogenesis affecting osteoporosis progression. Front. Endocrinol. (Lausanne) 12, 703167.
<https://doi.org/10.3389/fendo.2021.703167>
13. , D., Song, G., Zhang, Z.(2022) miR-216a-3p inhibits osteogenic differentiation of human adipose-derived stem cells via Wnt3a in the Wnt/β-catenin signaling pathway. Exp. Ther. Med. 23, 309.
<https://doi.org/10.3892/etm.2022.11238>
14. , S., Li, H., Wu, B. et al. (2022) TGF-β1 regulates chondrocyte proliferation and extracellular matrix synthesis via circPhf21a-Vegfa axis in osteoarthritis. Cell Commun. Signal. 20, 75.
<https://doi.org/10.1186/s12964-022-00881-9>
15. , Z., Li, S., Xu, S. et al. (2023) Hsa_Circ_0005044 promotes osteo/odontogenic differentiation of dental pulp stem cell via modulating miR-296-3p/FOSL1. DNA Cell Biol. 42, 14-26.
<https://doi.org/10.1089/dna.2022.0394>
16. , H., Sun, B., Cheng, L. et al. (2017) miR-139-5p represses BMSC osteogenesis via targeting Wnt/β-catenin signaling pathway. DNA Cell Biol. 36, 715-724.
<https://doi.org/10.1089/dna.2017.3657>
17. , Y., Shan, Z., Ma, J. et al. (2016) Validation of downregulated microRNAs during osteoclast formation and osteoporosis progression. Mol. Med. Rep. 13, 2273-2280.
<https://doi.org/10.3892/mmr.2016.4765>
18. , A., Srinaath, N., Rohini, M. et al. (2019) Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci. 232, 116676.
<https://doi.org/10.1016/j.lfs.2019.116676>
19. , G., Mirzamohammadi, F., Kobayashi, T. (2014) MicroRNAs involved in bone formation. Cell. Mol. Life Sci. 71, 4747-4761.
<https://doi.org/10.1007/s00018-014-1700-6>
20. , X. B., Wen, K., Wu, X. X. et al. (2021) MiR-183 regulates the differentiation of osteoblasts in the development of osteoporosis by targeting Smad4. Acta Histochem. 123, 151786.
<https://doi.org/10.1016/j.acthis.2021.151786>
21. , T., Li, H., Lu, T. et al. (2022) GATA4 regulates osteogenic differentiation by targeting miR-144-3p. Exp. Ther. Med. 23, 83.
<https://doi.org/10.3892/etm.2021.11006>
22. , G., Ruggiero, C., Meccariello, L. et al. (2021) Osteoporosis in men: a review of an underestimated bone condition. Int. J. Mol. Sci. 22, 2105.
<https://doi.org/10.3390/ijms22042105>
23. , M., Videira, M., Wilhelm, I. et al. (2020) miRNAs in health and disease: a focus on the breast cancer metastatic cascade towards the brain. Cells 9, 1790.
<https://doi.org/10.3390/cells9081790>
24. , L., Yang, R., Wei, L. et al. (2017) Prevalence of osteoporosis and related lifestyle and metabolic factors of postmenopausal women and elderly men: a cross-sectional study in Gansu province, northwestern of China. Medicine (Baltimore) 96, e8294.
<https://doi.org/10.1097/MD.0000000000008294>
25. , S., Selvamurugan, N. (2013) MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr. Issues Mol. Biol. 15, 7-18.
26. , R., Zhang, M., Hu, Y. et al. (2022) MiR-100-5p inhibits osteogenic differentiation of human bone mesenchymal stromal cells by targeting TMEM135. Hum Cell. 35, 1671-1683.
<https://doi.org/10.1007/s13577-022-00764-8>
27. , X., Guo, B., Li, Q. et al. (2013) miR-214 targets ATF4 to inhibit bone formation. Nat. Med. 19, 93-100.
<https://doi.org/10.1038/nm.3026>
28. , Z., Zhou, J., Shen, J. et al. (2024) Osteostaticytes: a novel osteoclast subset couples bone resorption and bone formation. J. Orthop. Translat. 47, 144-160.
<https://doi.org/10.1016/j.jot.2024.06.010>
29. , S. Y., Gao, F., Peng, C. G. et al. (2018) miR-485-5p promotes osteoporosis via targeting Osterix. Eur. Rev. Med. Pharmacol. Sci. 22, 4792-4799.
30. , C., Gu, Y., Wang, Y. et al. (2021) miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration via repressing Dkk3. Stem Cells Int. 2021, 7435605.
31. , J., Du, G., Fu, H. (2020) miR‑296‑3p promotes the proliferation of glioblastoma cells by targeting ICAT. Mol. Med. Rep. 21, 2151-2161.
32. , Z., Ma, J., Lu, J. et al. (2021) Circular RNA CircCDH13 contributes to the pathogenesis of osteoarthritis via CircCDH13/miR-296-3p/PTEN axis. J. Cell. Physiol. 236, 3521-3535.
<https://doi.org/10.1002/jcp.30091>

