Fol. Biol. 2025, 71, 73-78
https://doi.org/10.14712/fb2025071020073
Exploring IDH1 and IDH2 Mutations in Paediatric Medulloblastoma
References
1. 2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumors. J. Pathol. 224, 334-343.
< , M. F., Bacsi, K., Maggiani, F. et al. (https://doi.org/10.1002/path.2913>
2. 2018) Oncogenic R132 IDH1 mutations limit NADPH for de novo lipogenesis through [D]2-hydroxyglutarate production in fibrosarcoma cells. Cell Rep. 25, 1018.e4-1026.e4.
< , M. G., Muthusamy, T., Parker, S. J. et al. (https://doi.org/10.1016/j.celrep.2018.10.099>
3. 2018) Reduced hydroxymethylation characterizes medulloblastoma while TET and IDH genes are differentially expressed within molecular subgroups. J. Neurooncol. 139, 33-42.
< , K., Cruzeiro, G. A. V., Bonfim-Silva, R. et al. (https://doi.org/10.1007/s11060-018-2845-1>
4. 2012) Frequent mutation of isocitrate dehydrogenase [IDH]1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17, 72-79.
< , D. R., Tanabe, K. K., Fan, K. C. et al. (https://doi.org/10.1634/theoncologist.2011-0386>
5. 2018) Concurrent IDH1 and SMARCB1 mutations in pediatric medulloblastoma: a case report. Front. Neurol. 9, 398.
< , M., Egervari, K., Merkler, D. (https://doi.org/10.3389/fneur.2018.00398>
6. 2020) Medulloblastoma epigenetics and the path to clinical innovation. J. Neurooncol. 150, 35-46.
< , A. R., Toll, S. A., Cheng, D. et al. (https://doi.org/10.1007/s11060-020-03591-9>
7. 2020) IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br. J. Cancer 122, 1580-1589.
< , S., Liu, Y., Cai, S. J. et al. (https://doi.org/10.1038/s41416-020-0814-x>
8. 2009) Frequent IDH1 mutations in supratentorial primitive neuroectodermal tumors [sPNET] of adults but not children. Cell Cycle 8, 1806-1807.
< , J. T., Frühwald, M. C., Hasselblatt, M. et al. (https://doi.org/10.4161/cc.8.11.8594>
9. 1991) Catalytic mechanism of NADP+-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry 30, 8671-8678.
< , J. H., Dean, A. M., Koshland, D. E. et al. (https://doi.org/10.1021/bi00099a026>
10. 2012) ICGC PedBrain: dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100-105.
< , D. T. W., Jäger, N., Kool, M. et al. (https://doi.org/10.1038/nature11284>
11. 2004) Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J. Biol. Chem. 279, 39968-39974.
< , H. J., Lee, S. M., Son, B. G. et al. (https://doi.org/10.1074/jbc.M402260200>
12. 2023) Immune microenvironment of medulloblastoma: the association between its molecular subgroups and potential targeted immunotherapeutic receptors. World J. Clin. Oncol. 14, 117-130.
< , M., Mulla, N., Malibary, H. et al. (https://doi.org/10.5306/wjco.v14.i3.117>
13. 2004) Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by γ-rays. Int. J. Radiat. Biol. 80, 635-642.
< , S. H., Jo, S. H., Lee, S. M. et al. (https://doi.org/10.1080/09553000400007680>
14. 1969) The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J. Cell Biol. 41, 521-535.
< , F., Poole, B., Lazarow, P. B. et al. (https://doi.org/10.1083/jcb.41.2.521>
15. 2023) Exceptionally rare IDH1-mutant adult medulloblastoma with concurrent GNAS mutation revealed by in vivo magnetic resonance spectroscopy and deep sequencing. Acta Neuropathol. Commun. 11, 47.
< , R., Branzoli, F., Pagani, F. (https://doi.org/10.1186/s40478-023-01531-y>
16. 2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23, 1231-1251.
< , D. N., Perry, A., Wesseling, P. et al. (https://doi.org/10.1093/neuonc/noab106>
17. 2023) INDIGO Trial investigators. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N. Engl. J. Med. 389, 589-601.
< , I. K., van den Bent, M. J., Blumenthal, D. T. et al. (https://doi.org/10.1056/NEJMoa2304194>
18. 2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547, 311-317.
< , P. A., Buchhalter, I., Morrissy, A. S. et al. (https://doi.org/10.1038/nature22973>
19. 2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28, 3636-3643.
< , P., Schlenk, R. F., Gaidzik, V. I. et al. (https://doi.org/10.1200/JCO.2010.28.3762>
20. 2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807-1812.
< , D. W., Jones, S., Zhang, X. et al. (https://doi.org/10.1126/science.1164382>
21. 2015) Deep sequencing identifies IDH1 R132S mutation in adult medulloblastoma. J. Clin. Oncol. 33, e27-31.
< , M., Triscott, J., Northcott, P. A. et al. (https://doi.org/10.1200/JCO.2013.49.4864>
22. 2021) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 123, 465-472.
< , M. D., Northcott, P. A., Korshunov, A. et al. (https://doi.org/10.1007/s00401-011-0922-z>
23. 2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479-483.
< , S., Rohle, D., Goenka, A. et al. (https://doi.org/10.1038/nature10866>
24. 2018) Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell 34, 186-195.
< , M. S., Diplas, B. H., Yan, H. (https://doi.org/10.1016/j.ccell.2018.04.011>
25. 2009) IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765-773.
< , H., Parsons, D. W., Jin, G. et al. (https://doi.org/10.1056/NEJMoa0808710>
26. 2016) Molecular subgroups of adult medulloblastoma: a long-term single-institution study. Neuro Oncol. 18, 982-990.
< , F., Ohgaki, H., Xu, L. et al. (https://doi.org/10.1093/neuonc/now050>