Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 109-117

https://doi.org/10.14712/fb2025071030109

Dysregulated BARD1 Contributes to Paclitaxel Resistance in Ovarian Cancer via Up-regulating CYP2C8

Li Zhang1ID, Zixuan Pan1, Liqin Zhang1ID, Hua Liu1, Zonglan Li1, Shuo Feng2

1Gynecology Department 1, Affiliated Hospital of Shandong Second Medical University, Weifang, China
2Gynecology Department, Affiliated Hospital of Shandong Second Medical University, Fuyanshan District, Weifang, China

Received April 2025
Accepted June 2025

References

1. Agarwal, R., Kaye, S. B. (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer 3, 502-516. <https://doi.org/10.1038/nrc1123>
2. Backman, J. T., Filppula, A. M., Niemi, M. et al. (2016) Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol. Rev. 68, 168-241. <https://doi.org/10.1124/pr.115.011411>
3. Bergmann, T. K., Filppula, A. M., Launiainen, T. et al. (2016) Neurotoxicity and low paclitaxel clearance associated with concomitant clopidogrel therapy in a 60-year-old Caucasian woman with ovarian carcinoma. Br. J. Clin. Pharmacol. 81, 313-315. <https://doi.org/10.1111/bcp.12795>
4. Bieche, I., Narjoz, C., Asselah, T. et al. (2007) Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet. Genomics 17, 731-742. <https://doi.org/10.1097/FPC.0b013e32810f2e58>
5. Capriglione, S., Luvero, D., Plotti, F. et al. (2017) Ovarian cancer recurrence and early detection: may HE4 play a key role in this open challenge? A systematic review of literature. Med. Oncol. 34, 164. <https://doi.org/10.1007/s12032-017-1026-y>
6. Cui, H., Arnst, K., Miller, D. D. et al. (2020) Recent advances in elucidating paclitaxel resistance mechanisms in non-small cell lung cancer and strategies to overcome drug resistance. Curr. Med. Chem. 27, 6573-6595. <https://doi.org/10.2174/0929867326666191016113631>
7. Dan, V. M., Raveendran, R. S., Baby, S. (2021) Resistance to intervention: paclitaxel in breast cancer. Mini Rev. Med. Chem. 21, 1237-1268. <https://doi.org/10.2174/1389557520999201214234421>
8. Delozier, T. C., Kissling, G. E., Coulter, S. J.et al. (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab. Dispos. 35, 682-688. <https://doi.org/10.1124/dmd.106.012823>
9. Friedrich, M., Friedrich, D., Kraft, C. et al. (2021) Multimodal treatment of primary advanced ovarian cancer. Anticancer Res. 41, 3253-3260. <https://doi.org/10.21873/anticanres.15111>
10. Germano, S., O’Driscoll, L. (2009) Breast cancer: understanding sensitivity and resistance to chemotherapy and targeted therapies to aid in personalised medicine. Curr. Cancer Drug Targets 9, 398-418. <https://doi.org/10.2174/156800909788166529>
11. Hashizume, R., Fukuda, M., Maeda, I. et al. (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537-14540. <https://doi.org/10.1074/jbc.C000881200>
12. Holmes, D. (2015). Ovarian cancer: beyond resistance. Nature 527, S217. <https://doi.org/10.1038/527S217a>
13. Jiang, J., Wang, S., Wang, Z. et al. (2020) HOTAIR promotes paclitaxel resistance by regulating CHEK1 in ovarian cancer. Cancer Chemother. Pharmacol. 86, 295-305. <https://doi.org/10.1007/s00280-020-04120-1>
14. Kemp, Z., Ledermann, J. (2013) Update on first-line treatment of advanced ovarian carcinoma. Int. J. Womens Health 5, 45-51.
15. Klose, T. S., Blaisdell, J. A., Goldstein, J. A. (1999) Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J. Biochem. Mol. Toxicol. 13, 289-295. <https://doi.org/10.1002/(SICI)1099-0461(1999)13:6<289::AID-JBT1>3.0.CO;2-N>
16. Lorick, K. L., Jensen, J. P., Fang, S. et al. (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubi­quitination. Proc. Natl. Acad. Sci. U. S. A. 96, 11364-11369. <https://doi.org/10.1073/pnas.96.20.11364>
17. Manfredi, J. J., Horwitz, S. B. (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharmacol. Ther. 25, 83-125. <https://doi.org/10.1016/0163-7258(84)90025-1>
18. Markman, M. (2000) Weekly paclitaxel in the management of ovarian cancer. Semin. Oncol. 27(3 Suppl. 7), 37-40.
19. Ren, Y., Song, Z., Rieser, J. et al. (2023) USP15 represses hepatocellular carcinoma progression by regulation of pathways of cell proliferation and cell migration: a system biology analysis. Cancers (Basel) 15, 1371. <https://doi.org/10.3390/cancers15051371>
20. Ruffner, H., Joazeiro, C. A., Hemmati, D. et al. (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl. Acad. Sci. U. S. A. 98, 5134-5139. <https://doi.org/10.1073/pnas.081068398>
21. Skubnik, J., Svobodova Pavlickova, V., Ruml, T. et al. (2023) Autophagy in cancer resistance to paclitaxel: development of combination strategies. Biomed. Pharmacother. 161, 114458. <https://doi.org/10.1016/j.biopha.2023.114458>
22. Sonnichsen, D. S., Relling, M. V. (1994) Clinical pharmacokinetics of paclitaxel. Clin. Pharmacokinet. 27, 256-269. <https://doi.org/10.2165/00003088-199427040-00002>
23. Stewart, M. D., Zelin, E., Dhall, A. et al. (2018) BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes. Proc. Natl. Acad. Sci. U. S. A. 115, 1316-1321. <https://doi.org/10.1073/pnas.1715467115>
24. Sung, H., Ferlay, J., Siegel, R. L. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.
25. Tendulkar, S., Dodamani, S. (2021) Chemoresistance in ovarian cancer: prospects for new drugs. Anticancer Agents Med. Chem. 21, 668-678. <https://doi.org/10.2174/1871520620666200908104835>
26. Wu, L. C., Wang, Z. W., Tsan, J. T. et al. (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14, 430-440. <https://doi.org/10.1038/ng1296-430>
27. Ying, H., Zhao, R., Yu, Q. et al. (2022) CircATL2 enhances paclitaxel resistance of ovarian cancer via impacting miR-506-3p/NFIB axis. Drug Dev. Res. 83, 512-524. <https://doi.org/10.1002/ddr.21882>
28. Zhao, L., Yang, H., Wang, Y. et al. (2024) STUB1 suppresses paclitaxel resistance in ovarian cancer through mediating HOXB3 ubiquitination to inhibit PARK7 expression. Commun. Biol. 7, 1439. <https://doi.org/10.1038/s42003-024-07127-z>
29. Zunino, F., Cassinelli, G., Polizzi, D. et al. (1999) Molecular mechanisms of resistance to taxanes and therapeutic implications. Drug Resist. Updat. 2, 351-357. <https://doi.org/10.1054/drup.1999.0108>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive