Fol. Biol. 2025, 71, 109-117
https://doi.org/10.14712/fb2025071030109
Dysregulated BARD1 Contributes to Paclitaxel Resistance in Ovarian Cancer via Up-regulating CYP2C8
References
1. , R., Kaye, S. B. (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer 3, 502-516.
<https://doi.org/10.1038/nrc1123>
2. , J. T., Filppula, A. M., Niemi, M. et al. (2016) Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol. Rev. 68, 168-241.
<https://doi.org/10.1124/pr.115.011411>
3. , T. K., Filppula, A. M., Launiainen, T. et al. (2016) Neurotoxicity and low paclitaxel clearance associated with concomitant clopidogrel therapy in a 60-year-old Caucasian woman with ovarian carcinoma. Br. J. Clin. Pharmacol. 81, 313-315.
<https://doi.org/10.1111/bcp.12795>
4. , I., Narjoz, C., Asselah, T. et al. (2007) Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet. Genomics 17, 731-742.
<https://doi.org/10.1097/FPC.0b013e32810f2e58>
5. , S., Luvero, D., Plotti, F. et al. (2017) Ovarian cancer recurrence and early detection: may HE4 play a key role in this open challenge? A systematic review of literature. Med. Oncol. 34, 164.
<https://doi.org/10.1007/s12032-017-1026-y>
6. , H., Arnst, K., Miller, D. D. et al. (2020) Recent advances in elucidating paclitaxel resistance mechanisms in non-small cell lung cancer and strategies to overcome drug resistance. Curr. Med. Chem. 27, 6573-6595.
<https://doi.org/10.2174/0929867326666191016113631>
7. , V. M., Raveendran, R. S., Baby, S. (2021) Resistance to intervention: paclitaxel in breast cancer. Mini Rev. Med. Chem. 21, 1237-1268.
<https://doi.org/10.2174/1389557520999201214234421>
8. , T. C., Kissling, G. E., Coulter, S. J.et al. (2007) Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab. Dispos. 35, 682-688.
<https://doi.org/10.1124/dmd.106.012823>
9. , M., Friedrich, D., Kraft, C. et al. (2021) Multimodal treatment of primary advanced ovarian cancer. Anticancer Res. 41, 3253-3260.
<https://doi.org/10.21873/anticanres.15111>
10. , S., O’Driscoll, L. (2009) Breast cancer: understanding sensitivity and resistance to chemotherapy and targeted therapies to aid in personalised medicine. Curr. Cancer Drug Targets 9, 398-418.
<https://doi.org/10.2174/156800909788166529>
11. , R., Fukuda, M., Maeda, I. et al. (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537-14540.
<https://doi.org/10.1074/jbc.C000881200>
12. , D. (2015). Ovarian cancer: beyond resistance. Nature 527, S217.
<https://doi.org/10.1038/527S217a>
13. , J., Wang, S., Wang, Z. et al. (2020) HOTAIR promotes paclitaxel resistance by regulating CHEK1 in ovarian cancer. Cancer Chemother. Pharmacol. 86, 295-305.
<https://doi.org/10.1007/s00280-020-04120-1>
14. , Z., Ledermann, J. (2013) Update on first-line treatment of advanced ovarian carcinoma. Int. J. Womens Health 5, 45-51.
15. , T. S., Blaisdell, J. A., Goldstein, J. A. (1999) Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J. Biochem. Mol. Toxicol. 13, 289-295.
<https://doi.org/10.1002/(SICI)1099-0461(1999)13:6<289::AID-JBT1>3.0.CO;2-N>
16. , K. L., Jensen, J. P., Fang, S. et al. (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. U. S. A. 96, 11364-11369.
<https://doi.org/10.1073/pnas.96.20.11364>
17. , J. J., Horwitz, S. B. (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharmacol. Ther. 25, 83-125.
<https://doi.org/10.1016/0163-7258(84)90025-1>
18. , M. (2000) Weekly paclitaxel in the management of ovarian cancer. Semin. Oncol. 27(3 Suppl. 7), 37-40.
19. , Y., Song, Z., Rieser, J. et al. (2023) USP15 represses hepatocellular carcinoma progression by regulation of pathways of cell proliferation and cell migration: a system biology analysis. Cancers (Basel) 15, 1371.
<https://doi.org/10.3390/cancers15051371>
20. , H., Joazeiro, C. A., Hemmati, D. et al. (2001) Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc. Natl. Acad. Sci. U. S. A. 98, 5134-5139.
<https://doi.org/10.1073/pnas.081068398>
21. , J., Svobodova Pavlickova, V., Ruml, T. et al. (2023) Autophagy in cancer resistance to paclitaxel: development of combination strategies. Biomed. Pharmacother. 161, 114458.
<https://doi.org/10.1016/j.biopha.2023.114458>
22. , D. S., Relling, M. V. (1994) Clinical pharmacokinetics of paclitaxel. Clin. Pharmacokinet. 27, 256-269.
<https://doi.org/10.2165/00003088-199427040-00002>
23. , M. D., Zelin, E., Dhall, A. et al. (2018) BARD1 is necessary for ubiquitylation of nucleosomal histone H2A and for transcriptional regulation of estrogen metabolism genes. Proc. Natl. Acad. Sci. U. S. A. 115, 1316-1321.
<https://doi.org/10.1073/pnas.1715467115>
24. , H., Ferlay, J., Siegel, R. L. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.
25. , S., Dodamani, S. (2021) Chemoresistance in ovarian cancer: prospects for new drugs. Anticancer Agents Med. Chem. 21, 668-678.
<https://doi.org/10.2174/1871520620666200908104835>
26. , L. C., Wang, Z. W., Tsan, J. T. et al. (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14, 430-440.
<https://doi.org/10.1038/ng1296-430>
27. , H., Zhao, R., Yu, Q. et al. (2022) CircATL2 enhances paclitaxel resistance of ovarian cancer via impacting miR-506-3p/NFIB axis. Drug Dev. Res. 83, 512-524.
<https://doi.org/10.1002/ddr.21882>
28. , L., Yang, H., Wang, Y. et al. (2024) STUB1 suppresses paclitaxel resistance in ovarian cancer through mediating HOXB3 ubiquitination to inhibit PARK7 expression. Commun. Biol. 7, 1439.
<https://doi.org/10.1038/s42003-024-07127-z>
29. , F., Cassinelli, G., Polizzi, D. et al. (1999) Molecular mechanisms of resistance to taxanes and therapeutic implications. Drug Resist. Updat. 2, 351-357.
<https://doi.org/10.1054/drup.1999.0108>

