Fol. Biol. 2025, 71, 95-108
https://doi.org/10.14712/fb2025071030095
Genetic and Non-Genetic Risk Factors in Prostate Cancer: Towards a Precision Medicine Approach
References
1. , N., Chehade, L., Abdul Sater, Z. et al. (2025) The silent burden of de novo metastatic prostate cancer in the Middle East: a call for region-specific screening guidelines. Soc. Int. Urol. J. 6, 4.
<https://doi.org/10.3390/siuj6010004>
2. , W., Patnaik, A., Campbell, D. et al. (2020) Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 38, 3763-3772.
<https://doi.org/10.1200/JCO.20.01035>
3. , N., Azad, A. A., Carles, J. et al. (2023) Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. Lancet 402, 291-303.
<https://doi.org/10.1016/S0140-6736(23)01055-3>
4. , N., Saad, F., Azad, A. A. et al. (2024) TALAPRO-3 clinical trial protocol: phase III study of talazoparib plus enzalutamide in metastatic castration-sensitive prostate cancer. Future Oncol. 20, 493-505.
<https://doi.org/10.2217/fon-2023-0526>
5. , S., El-Metwally, A. (2023) Cigarette smoking and prostate cancer: a systematic review and meta-analysis of prospective cohort studies. Tob. Induc. Dis. 21, 1-12.
<https://doi.org/10.18332/tid/157231>
6. , C. B., DeCastro, G. J. (2018) Genetic signatures on radical prostatectomy specimens: clinical implications. Transl. Cancer Res. 7, S704-S710.
<https://doi.org/10.21037/tcr.2018.07.16>
7. , M., Borg, M., O’Callaghan, M. E. et al., South Australian Prostate Cancer Clinical Outcomes Collaborative (SA-PCCOC) (2020) Survival outcomes in men with a positive family history of prostate cancer: a registry based study. BMC Cancer 20, 894.
<https://doi.org/10.1186/s12885-020-07174-9>
8. , S., Vočka, M., Čapoun, O. et al. (2023) Timing of early salvage therapy for patients with biochemical relapse of prostate carcinoma. Oncol. Rev. 17, 10676.
<https://doi.org/10.3389/or.2023.10676>
9. , R., Gowin, K. (2025) The impact of diet and nutrition on prostate cancer – food for thought? Curr. Oncol. Rep. 27, 278-289.
<https://doi.org/10.1007/s11912-025-01641-x>
10. , V., Rota, M., Botteri, E. et al. (2015) Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br. J. Cancer 112, 580-593.
<https://doi.org/10.1038/bjc.2014.579>
11. , E. K., Page, E. C., Brook, M. N. et al. IMPACT Study Collaborators (2021) A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study. Lancet Oncol. 22, 1618-1631.
<https://doi.org/10.1016/S1470-2045(21)00522-2>
12. , J. L., Hathcock, M., Yee, C. et al. (2015) The HOXB13 G84E mutation is associated with an increased risk for prostate cancer and other malignancies. Cancer Epidemiol. Biomarkers Prev. 24, 1366-1372.
<https://doi.org/10.1158/1055-9965.EPI-15-0247>
13. , A., Spence, A., Karakiewicz, P. I. et al. (2015) Metabolic syndrome and prostate cancer risk in a population-based case-control study in Montreal, Canada. BMC Public Health 15, 913.
<https://doi.org/10.1186/s12889-015-2260-x>
14. , P. M., Yurgelun, M. B., Boland C. R. (2018) Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J. Clin. 68, 217-231.
15. , O., Damber, J.-E., Emanuelsson, M. et al. (2002) Hereditary prostate cancer: clinical characteristics and survival. J. Urol. 167, 2423-2426.
<https://doi.org/10.1016/S0022-5347(05)64997-X>
16. , F., Laversanne, M., Sung, H. et al. (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229-263.
17. , M. N., Ní Raghallaigh, H., Govindasami, K. et al. UKGPCS Collaborators (2023) Family history of prostate cancer and survival outcomes in the UK genetic prostate cancer study. Eur. Urol. 83, 257-266.
<https://doi.org/10.1016/j.eururo.2022.11.019>
18. , D. W., Moore, D., Parlanti A. et al. (2003) Relative risk of prostate cancer for men with affected relatives: systematic review and meta-analysis. Int. J. Cancer 107, 797-803.
<https://doi.org/10.1002/ijc.11466>
19. , J. A., Weiner, A. B., Catalona, W. J. et al. (2019) Inflammatory bowel disease and the risk of prostate cancer. Eur. Urol. 75, 846-852.
<https://doi.org/10.1016/j.eururo.2018.11.039>
20. , L. C., Alexander, D. D. (2015) A review and meta-analysis of prospective studies of red and processed meat, meat cooking methods, heme iron, heterocyclic amines and prostate cancer. Nutr. J. 14, 125.
<https://doi.org/10.1186/s12937-015-0111-3>
21. , H., Liu, B., Xu, X. (2023) Alcohol consumption and prostate cancer risk: a meta-analysis of prospective cohort studies. Int. J. Cancer 152, 540-550.
22. , E., Goh, C., Leongamornlert, D. et al. (2015) Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur. Urol. 68, 186-193.
<https://doi.org/10.1016/j.eururo.2014.10.022>
23. , E., Goh, C., Olmos, D. et al. (2013) Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J. Clin. Oncol. 31, 1748-1757.
<https://doi.org/10.1200/JCO.2012.43.1882>
24. , E., Romero-Laorden, N., Del Pozo, A. et al. (2019) PROREPAIR-B: a prospective cohort study of the impact of germline DNA repair mutations on the outcomes of patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 37, 490-503.
<https://doi.org/10.1200/JCO.18.00358>
25. Centers for Disease Control and Prevention. (2025, June 11) Alcohol and Cancer [cit. 20.7.2025]. Available at: https://www.cdc.gov/cancer/risk-factors/alcohol.html
26. , N., Zhou, Q. (2016) The evolving Gleason grading system. Chin. J. Cancer Res. 28, 58-64.
<https://doi.org/10.21147/j.issn.1000-9604.2016.06.02>
27. , X., Zhao, Y., Tao, Z. et al. (2021) Coffee consumption and risk of prostate cancer: a systematic review and meta-analysis. BMJ Open 11, e038902.
<https://doi.org/10.1136/bmjopen-2020-038902>
28. , Z., Greenwood, C., Isaacs, W. B. et al. (2013) The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis 34, 1260-1264.
<https://doi.org/10.1093/carcin/bgt055>
29. , K. N., Sandhu, S., Smith, M. R. et al. (2023) Niraparib plus abiraterone acetate with prednisone in patients with metastatic castration-resistant prostate cancer and homologous recombination repair gene alterations: second interim analysis of the randomized phase III MAGNITUDE trial. Ann. Oncol. 34, 772-782.
<https://doi.org/10.1016/j.annonc.2023.06.009>
30. , R., Vesprini, D., Narod, S. A. (2022) The effect of age on prostate cancer survival. Cancers (Basel) 14, 4149.
<https://doi.org/10.3390/cancers14174149>
31. , N. W., Armstrong A. J., Thiery-Vuillemin A. et al. (2022) Abiraterone and olaparib for metastatic castration-resistant prostate cancer. NEJM Evid. 1, EVIDoa2200043.
<https://doi.org/10.1056/EVIDoa2200043>
32. , C., Heemers, H., Sharifi, N. (2017) Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 7, a030452.
<https://doi.org/10.1101/cshperspect.a030452>
33. , O., Pastore, E., Gandini, S. et al. (2023) Association between alcohol intake and prostate cancer mortality and survival. Nutrients 15, 925.
<https://doi.org/10.3390/nu15040925>
34. , J. D., Tindall, D. J. (2002) The role of androgens and the androgen receptor in prostate cancer. Cancer Lett. 187, 1-7.
<https://doi.org/10.1016/S0304-3835(02)00413-5>
35. , J., Mateo, J., Fizazi, K. et al. (2020) Olaparib for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 382, 2091-2102.
<https://doi.org/10.1056/NEJMoa1911440>
36. , L. K., Dawson, D. V. (2002) Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology 13, 72-79.
<https://doi.org/10.1097/00001648-200201000-00012>
37. , A., Orsini, N., Wolk, A. (2012) Body mass index and incidence of localized and advanced prostate cancer – a dose-response meta-analysis of prospective studies. Ann. Oncol. 23, 1665-1671.
<https://doi.org/10.1093/annonc/mdr603>
38. , M., Haupt, S., Seppälä, T. T. et al. (2023) Mortality by age, gene and gender in carriers of pathogenic mismatch repair gene variants receiving surveillance for early cancer diagnosis and treatment: a report from the prospective Lynch syndrome database. EClinicalMedicine 58, 101909.
<https://doi.org/10.1016/j.eclinm.2023.101909>
39. , T., Argalácsová, S., Soukupová, J. et al. (2023) Germline pathogenic variants in squamous cell carcinoma of the head and neck. Folia Biol. (Praha) 69, 107-115.
<https://doi.org/10.14712/fb2023069040107>
40. EAU Guidelines on Prostate Cancer 2025. Available at: https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-EANM-ESTRO-ESUR-ISUP-SIOG-Guidelines-on-Prostate-Cancer-2025_2025-03-24-120144_rinw.pdf
41. , J. I., Egevad, L., Amin, M. B. et al. (2016) The 2014 International Society of Urological Pathology (ISUP) Consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244-252.
<https://doi.org/10.1097/PAS.0000000000000530>
42. , G., Chiavarini, M., Dolcini, J. et al. (2024) The association between cadmium exposure and prostate cancer: an updated systematic review and meta-analysis. Int. J. Environ. Res. Public Health 21, 1532.
<https://doi.org/10.3390/ijerph21111532>
43. , K., Drake, C. G., Beer, T. M. et al. (2020) Final analysis of the ipilimumab versus placebo following radiotherapy phase III trial in postdocetaxel metastatic castration-resistant prostate cancer identifies an excess of long-term survivors. Eur. Urol. 78, 822-830.
<https://doi.org/10.1016/j.eururo.2020.07.032>
44. , E. L., Liu, Y., Leitzmann, M. F. et al. (2005) A prospective study of physical activity and incident and fatal prostate cancer. Arch. Intern. Med. 165, 1005-1010.
<https://doi.org/10.1001/archinte.165.9.1005>
45. , V. N., Hegarty, S. E., Hyatt, C. et al. (2019) Germline genetic testing for inherited prostate cancer in practice: implications for genetic testing, precision therapy, and cascade testing. Prostate 79, 333-339.
<https://doi.org/10.1002/pros.23739>
46. , V. N., Knudsen, K. E., Kelly, W. K. et al. (2018) Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017. J. Clin. Oncol. 36, 414-424.
<https://doi.org/10.1200/JCO.2017.74.1173>
47. , R., Carreira, S., Miranda, S. et al. (2023) Germline ATM mutations detected by somatic DNA sequencing in lethal prostate cancer. Eur. Urol. Open Sci. 52, 72-78.
<https://doi.org/10.1016/j.euros.2023.04.003>
48. , M. J., Bernhisel, R., Hughes, E., et al. (2021) Germline pathogenic variants in the Ataxia Telangiectasia Mutated (ATM) gene are associated with high and moderate risks for multiple cancers. Cancer Prev. Res. (Phila) 14, 433-440.
<https://doi.org/10.1158/1940-6207.CAPR-20-0448>
49. , H., Astiazaran-Symonds, E., Amendola, L. M. et al. (2023) Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100870.
<https://doi.org/10.1016/j.gim.2023.100870>
50. , D., Misso, M. (2012) Lycopene for the prevention and treatment of benign prostatic hyperplasia and prostate cancer: a systematic review. Maturitas 72, 269-276.
<https://doi.org/10.1016/j.maturitas.2012.04.014>
51. Institute of Health Information and Statistics of the Czech Republic (2019) Národní onkologický registr (NOR) (National Cancer Registry), [cit. 25.2.2025]. Available at: http://www.uzis.cz/registry-nzis/nor (In Czech).
52. , F., Moreira, D. M., Boffetta, P. et al. (2014) A systematic review and meta-analysis of tobacco use and prostate cancer mortality and incidence in prospective cohort studies. Eur. Urol. 66, 1054-1064.
<https://doi.org/10.1016/j.eururo.2014.08.059>
53. , J. L., Boyer, M. J., Bennett, J. P. et al. (2023) The 17–gene genomic prostate score test is prognostic for outcomes after primary external beam radiation therapy in men with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 115, 120-131.
<https://doi.org/10.1016/j.ijrobp.2022.06.101>
54. , Q., Brook, M. N., Dadaev, T. et al. (2021) Rare germline variants in ATM predispose to prostate cancer: A PRACTICAL Consortium Study. Eur. Urol. Oncol. 4, 570-579.
<https://doi.org/10.1016/j.euo.2020.12.001>
55. , S. A., Stampfer, M. J., Chan, J. M. et al. (2011) Smoking and prostate cancer survival and recurrence. JAMA 305, 2548–2555.
<https://doi.org/10.1001/jama.2011.879>
56. , T., Sato, S., Takahashi, H. et al. (2021) Global trends of latent prostate cancer in autopsy studies. Cancers (Basel) 13, 359.
<https://doi.org/10.3390/cancers13020359>
57. , P., Novotný, J., Cibula, D. et al. (2024) The guidelines for clinical practice for carriers of germline mutations in hereditary breast, ovarian, prostate, and pancreatic cancer predisposition genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 (4.2024). Klin. Onkol. 38, 292-299.
58. , A. R., Till, C., Song, X. et al. (2014) Plasma vitamin D and prostate cancer risk: results from the Selenium and Vitamin E Cancer Prevention Trial. Cancer Epidemiol. Biomarkers Prev. 23, 1494-1504.
<https://doi.org/10.1158/1055-9965.EPI-14-0115>
59. , J., Silvestri, V., Kuchenbaecker, K. B. et al. (2017) Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 mutation carriers using polygenic risk scores. J. Clin. Oncol. 35, 2240-2250.
<https://doi.org/10.1200/JCO.2016.69.4935>
60. , G., Mattiuzzi, C. (2015) Fried food and prostate cancer risk: systematic review and meta-analysis. Int. J. Food Sci. Nutr. 66, 587-589.
<https://doi.org/10.3109/09637486.2015.1056111>
61. , Y., Hu, F., Li, D. et al. (2011) Does physical activity reduce the risk of prostate cancer? A systematic review and meta-analysis. Eur. Urol. 60, 1029-1044.
<https://doi.org/10.1016/j.eururo.2011.07.007>
62. Májek, O., Koudelková, M., Hejcmanová, K. et al. Population pilot programme for prostate cancer early detection in the Czech Republic: situation analysis and planned design. International Cancer Screening Network. PowerPoint presentation from 23.06.2023 [cit. 24.4.2025]. Available at: https://icsn.global/wp-content/uploads/2023/08/June-23-15.20-PS5-Majek_ICSN_v6x.pdf (In Czech)
63. , A., Le, D. T., Ascierto, P. A. et al. (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1-10.
<https://doi.org/10.1200/JCO.19.02105>
64. , M., Fujita, K., Nonomura, N. (2020) Influence of diet and nutrition on prostate cancer. Int. J. Mol. Sci. 21, 1447.
<https://doi.org/10.3390/ijms21041447>
65. , K. N., Cheng, H. H., Powers, J. et al. (2022) Inherited TP53 variants and risk of prostate cancer. Eur. Urol. 81, 243-250.
<https://doi.org/10.1016/j.eururo.2021.10.036>
66. , O., Tan, W., Bryce, A. H. et al. (2024) A real-world experience of pembrolizumab monotherapy in microsatellite instability-high and/or tumor mutation burden-high metastatic castration-resistant prostate cancer: outcome analysis. Prostate Cancer Prostatic Dis. 28, 138-144.
<https://doi.org/10.1038/s41391-024-00799-y>
67. , N., van den Bergh, R. C. N., Briers, E. et al. (2021) EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer – 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 79, 243-262.
<https://doi.org/10.1016/j.eururo.2020.09.042>
68. , L., Ndong, J. R., Giusti, A. et al. (2010) Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 28, 3457-3462.
<https://doi.org/10.1200/JCO.2009.27.2153>
69. , R., Zheng, S. L., Han, M. et al. (2017) Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur. Urol. 71, 740-747.
<https://doi.org/10.1016/j.eururo.2016.11.033>
70. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Prostate cancer early detection (version 1.2025) [cit. 09.06.2025]. Available at: https://www.nccn.org/professionals/physician_gls/pdf/prostate_detection.pdf
71. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Genetic/familial high-risk assessment: breast, ovarian, pancreatic, and prostate (version 3.2025) [cit. 24.04.2025]. Available at: https://www.nccn.org/professionals/physician_gls/pdf/genetics_bopp.pdf
72. NCCN: National Comprehensive Cancer Network. Prostate cancer (version 1.2025) [cit. 19.02.2025]. Available at: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf
73. , P., Ledet, E., Yang, S. et al. (2019) Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 5, 523-528.
<https://doi.org/10.1001/jamaoncol.2018.6760>
74. , S., Salari-Moghaddam, A., Aminianfar, A. et al. (2022) Association between red and processed meat consumption and risk of prostate cancer: a systematic review and meta-analysis. Front. Nutr. 9, 801722.
<https://doi.org/10.3389/fnut.2022.801722>
75. , Y. A., Murphy, A. B., Bowen, D. K. et al. (2016) Associations between serum vitamin D and adverse pathology in men undergoing radical prostatectomy. J. Clin. Oncol. 34, 1345-1349.
<https://doi.org/10.1200/JCO.2015.65.1463>
76. , T., Frost, D., Barrowdale, D. et al. (2020) Prostate cancer risks for male BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Eur. Urol. 77, 24-35.
<https://doi.org/10.1016/j.eururo.2019.08.025>
77. , L. A., Beane Freeman, L. E., Lerro, C.C. et al. (2020) Pesticide exposure and risk of aggressive prostate cancer among private pesticide applicators. Environ. Health 19, 30.
<https://doi.org/10.1186/s12940-020-00583-0>
78. , C., Castro, E., Fizazi, K. et al. (2020) ESMO Guidelines Committee. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1119-1134.
<https://doi.org/10.1016/j.annonc.2020.06.011>
79. , T., Yuen, K. C., Gillessen, S. et al. (2022) Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat. Med. 28, 144-153.
<https://doi.org/10.1038/s41591-021-01600-6>
80. , C. C., Mateo, J., Walsh, M. F. et al. (2016) Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443-453.
<https://doi.org/10.1056/NEJMoa1603144>
81. , W., Shapiro, D. D., Zhang, M. et al. (2021) Optimizing the diagnosis and management of ductal prostate cancer. Nat. Rev. Urol. 18, 337-358.
<https://doi.org/10.1038/s41585-021-00447-3>
82. , D. E., Chi, K. N., Olmos, D. et al. (2021) AMPLITUDE: a study of niraparib in combination with abiraterone acetate plus prednisone (AAP) versus AAP for the treatment of patients with deleterious germline or somatic homologous recombination repair (HRR) gene-altered metastatic castration-sensitive prostate cancer (mCSPC). J. Clin. Oncol. 39, TPS176.
<https://doi.org/10.1200/JCO.2021.39.6_suppl.TPS176>
83. , J. R., Wilson, K. M., Sinnott, J. A. et al. (2016) Ejaculation frequency and risk of prostate cancer: updated results with an additional decade of follow-up. Eur. Urol. 70, 974-982.
<https://doi.org/10.1016/j.eururo.2016.03.027>
84. , F., Plym, A., Vaselkiv, J. B. et al. (2024) Impact of family history and germline genetic risk single nucleotide polymorphisms on long-term outcomes of favorable-risk prostate cancer. J. Urol. 211, 754-764.
<https://doi.org/10.1097/JU.0000000000003927>
85. , G. I., Calogero, A. E., Condorelli, R. A. et al. (2020) Human papillomavirus and risk of prostate cancer: a systematic review and meta-analysis. Aging Male 23, 132-138.
<https://doi.org/10.1080/13685538.2018.1455178>
86. , S., Jenkins, M. A., Win, A. K. (2014) Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 23, 437-449.
<https://doi.org/10.1158/1055-9965.EPI-13-1165>
87. , J., Rajmonová, A., Heřman, V. et al. (2024) Immune checkpoints and their inhibition in T-cell lymphomas. Folia Biol. (Praha) 70, 123-151.
<https://doi.org/10.14712/fb2024070030123>
88. , J., Zinda, M., Riaz, N. et al. (2021) Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 11, 1626-1635.
<https://doi.org/10.1158/2159-8290.CD-20-1503>
89. , P., Pachynski, R. K., Narayan, V. et al. (2020) Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 Trial. Cancer Cell 38, 489-499.e3.
<https://doi.org/10.1016/j.ccell.2020.08.007>
90. , E. J., Laversanne, M., Sung, H. et al. (2024) Recent patterns and trends in global prostate cancer incidence and mortality: an update. Eur. Urol. 87, 302-313.
<https://doi.org/10.1016/j.eururo.2024.11.013>
91. , K. R., Shi, M., Shelley, J. P. et al. (2023) A polygenic risk score for prostate cancer risk prediction. JAMA Intern. Med. 183, 386-388.
<https://doi.org/10.1001/jamainternmed.2022.6795>
92. Schneider, K., Zelley, K., Nichols, K. E. et al., editors (1999, updated 2025) Li-Fraumeni Syndrome. In: GeneReviews® [Internet], Seattle (WA): University of Washington.
93. , F. R., Al Olama, A. A., Berndt, S. I. et al. (2018) Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928-936.
<https://doi.org/10.1038/s41588-018-0142-8>
94. , C., Xu, M., Shoben, A. et al. (2024) Clinical features of prostate cancer by polygenic risk score. Fam. Cancer 23, 499-505.
<https://doi.org/10.1007/s10689-024-00369-0>
95. , A. R., Rousseau, M. C., Parent, M. É. (2014) Sexual partners, sexually transmitted infections, and prostate cancer risk. Cancer Epidemiol. 38, 700-707.
<https://doi.org/10.1016/j.canep.2014.09.005>
96. , L., Kleiblova, P., Janatova, M. et al. (2020) CHEK2 germline variants in cancer predisposition: stalemate rather than checkmate. Cells 9, 2675.
<https://doi.org/10.3390/cells9122675>
97. , T. M., Høyer, S., Kirkegaard, P. et al. (2016) Prevalence of the HOXB13 G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU Int. 118, 646-653.
<https://doi.org/10.1111/bju.13416>
98. , M. L., Mainous, A. G. 3rd, Wells, B. J. (2005) Prostate cancer and sexually transmitted diseases: a meta-analysis. Fam. Med. 37, 506-512.
99. , E. A., Monare, L. R., Petersen, D. C. et al. (2014) Clinical presentation of prostate cancer in black South Africans. Prostate 74, 880-891.
<https://doi.org/10.1002/pros.22806>
100. , E., Tansol, C., Tania, C. et al. (2024). Prognostic nutritional index (PNI) as independent predictor of poor survival in prostate cancer: a systematic review and meta-analysis. Clin. Genitourin. Cancer 22, 102142.
<https://doi.org/10.1016/j.clgc.2024.102142>
101. , I. A., Ibragimova, M. K., Tsyganov, M. M. et al. (2023) Human papillomavirus and prostate cancer: systematic review and meta-analysis. Sci. Rep. 13, 16597.
<https://doi.org/10.1038/s41598-023-43767-7>
102. , A. C., Howard, L. E., Moreira D. M. et al. (2014) Obesity increases the risk for high-grade prostate cancer: results from the REDUCE study. Cancer Epidemiol. Biomarkers Prev. 23, 2936-2942.
<https://doi.org/10.1158/1055-9965.EPI-14-0795>
103. , J., Shi, Z., Na, R. et al. (2020) Germline HOXB13 G84E mutation carriers and risk to twenty common types of cancer: results from the UK Biobank. Br. J. Cancer 123, 1356-1359.
<https://doi.org/10.1038/s41416-020-01036-8>
104. , A. K., Jenkins, M. A., Dowty, J. G. et al. (2017) Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 26, 404-412.
<https://doi.org/10.1158/1055-9965.EPI-16-0693>
105. , X., Leslie, G., Doroszuk, A. et al. (2020) Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J. Clin. Oncol. 38, 674-685.
<https://doi.org/10.1200/JCO.19.01907>
106. , X., Chen, H., Zhang, S. et al. (2023) Association of cigarette smoking habits with the risk of prostate cancer: a systematic review and meta-analysis. BMC Public Health 23, 1150.
<https://doi.org/10.1186/s12889-023-16085-w>
107. , R., Wang, S., Zhang, S. et al. (2023) Global, regional, and national lifetime probabilities of developing cancer in 2020. Sci. Bull. (Beijing) 68, 2620-2628.
<https://doi.org/10.1016/j.scib.2023.09.041>

