Fol. Biol. 2025, 71, 149-161
https://doi.org/10.14712/fb2025.0001
Iron Must Be in Haemin to Act as a Pro-Inflammatory Stimulus in Cultured Human THP-1 Monocytes
References
1. Bergmeyer, H. U. (ed.) (1974) Methods of Enzymatic Analysis 2nd Edition. Academic Press, New York.
2. , Z. I. (2014) Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front. Pharmacol. 5, 45.
<https://doi.org/10.3389/fphar.2014.00045>
3. , W., Mes, J., Vreeburg, R. A. et al. (2010) Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food Funct. 1, 254-261.
<https://doi.org/10.1039/c0fo00113a>
4. , W., Mes, J. J., Wichers, H. J. (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharmacol. 23, 37-45.
<https://doi.org/10.1016/j.intimp.2014.08.002>
5. , S., Chinetti-Gbaguidi, G., Staels, B. (2014) Macrophage phenotypes in atherosclerosis. Immunol. Rev. 262, 153-166.
<https://doi.org/10.1111/imr.12218>
6. , A,. Frioni, A., Berlutti, F. et al. (2014) Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages. Biometals 27, 807-813.
<https://doi.org/10.1007/s10534-014-9742-7>
7. , M., Buchal, R., Leníček, M. et al. (2025) Iron-dependent lysosomal LDL oxidation induces the expression of scavenger receptor A in human THP-1 monocytes. FEBS Open Bio. 15, 1246-1266.
<https://doi.org/10.1002/2211-5463.70048>
8. Davies, J. M. (ed.) (2002) Basic Cell Culture Second Edition: A Practical Approach. Oxford University Press, New York.
9. , M. P., van Dijk, K. W., Havekes, L. M. et al. (2000) Macrophage scavenger receptor class A: a multifunctional receptor in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 290-297.
<https://doi.org/10.1161/01.ATV.20.2.290>
10. , T. R., Morel, D. W., Harrison, E. H. (2000) Novel cell culture medium for use in oxidation experiments provides insights into mechanisms of endothelial cell-mediated oxidation of LDL. In Vitro Cell. Dev. Biol. Anim. 36, 571-577.
11. , S., Kakhlon, O., Glickstein, H. et al. (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal. Biochem. 248, 31-40.
<https://doi.org/10.1006/abio.1997.2126>
12. , J. L., Ho, Y. K., Basu, S. K. et al. (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. U. S. A. 76, 333-337.
<https://doi.org/10.1073/pnas.76.1.333>
13. , A., Finn, A. V. (2014) The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front. Pharmacol. 5, 195.
<https://doi.org/10.3389/fphar.2014.00195>
14. Halliwell, B., Gutteridge, J. M. (2015) Free Radicals in Biology and Medicine. Oxford University Press, New York.
15. , H., Tanishita, H., Yokoyama, S. et al. (1987) Induction of acetylated low density lipoprotein receptor and suppression of low density lipoprotein receptor on the cells of human monocytic leukemia cell line (THP-1 cell). Biochem. Biophys. Res. Commun. 146, 802-808.
<https://doi.org/10.1016/0006-291X(87)90601-2>
16. , R. C., Kong, X. (2013) Iron speciation in the cytosol: an overview. Dalton Trans. 42, 3220-3229.
<https://doi.org/10.1039/C2DT32149A>
17. , S., Kono, M., Suzuki, T. et al. (2018) Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfus. Apher. Sci. 57, 524-531.
<https://doi.org/10.1016/j.transci.2018.05.028>
18. , A., Meher, A. K., Sharma, P. R. et al. (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. 107, 737-746.
<https://doi.org/10.1161/CIRCRESAHA.109.215715>
19. , J. K., Wang, S. C., Ho, L. W. et al. (2020) M2-like polarization of THP-1 monocyte-derived macrophages under chronic iron overload. Ann. Hematol. 99, 431-441.
<https://doi.org/10.1007/s00277-020-03916-8>
20. , S., Willeit, J., Egger, G. et al. (1997) Body iron stores and the risk of carotid atherosclerosis: prospective results from the Bruneck study. Circulation 96, 3300-3307.
<https://doi.org/10.1161/01.CIR.96.10.3300>
21. , P. J. (2017) The role of iron in the pathogenesis of atherosclerosis. Physiol. Res. 66 (Suppl. 1), S55-S67.
<https://doi.org/10.33549/physiolres.933589>
22. , P. J., Klein, R. L., Huang, Y. et al. (2005) Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism 54, 453-459.
<https://doi.org/10.1016/j.metabol.2004.10.012>
23. , D. J., Merlot, A. M., Huang, M. L. et al. (2015) Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim. Biophys. Acta 1853, 1130-1144.
<https://doi.org/10.1016/j.bbamcr.2015.01.021>
24. Yasin, Z. N., Mohd Idrus, F. N., Hoe, C. H. et al. (2022) Macrophage polarization in THP-1 cell line and primary monocytes: a systematic review. Differentiation 128, 67-82.
<https://doi.org/10.1016/j.diff.2022.10.001>
25. , E. H., Huebers, H., Finch, C. A. (1978) Differences between the binding sites for iron binding and release in human and rat transferrin. Blood 52, 1219-1228.
<https://doi.org/10.1182/blood.V52.6.1219.1219>
26. , M., Schroll, A., Demetz, E. et al. (2015) ‘Ride on the ferrous wheel’ – the cycle of iron in macrophages in health and disease. Immunobiology 220, 280-294.
<https://doi.org/10.1016/j.imbio.2014.09.010>
27. , M., Hamza, I. (2025) Heme and immunity: the heme oxygenase dichotomy. J. Inorg. Biochem. 267, 112844.
<https://doi.org/10.1016/j.jinorgbio.2025.112844>
28. , M., Banaszewska, A., Dudziak, J. et al. (2012) Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. Protein J. 31, 511-518.
<https://doi.org/10.1007/s10930-012-9431-8>
29. , P. (1999) Cellular iron metabolism. Kidney Int. Suppl. 69, S2-S11.
<https://doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x>
30. , L., Hendrik, Z., Patsalos, A. et al. (2021) Oxidation of hemoglobin drives a proatherogenic polarization of macrophages in human atherosclerosis. Antioxid. Redox Signal. 35, 917-950.
<https://doi.org/10.1089/ars.2020.8234>
31. , J. T., Nyyssönen, K., Korpela, H. et al. (1992) High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86, 803-811.
<https://doi.org/10.1161/01.CIR.86.3.803>
32. , D. (2009) The LDL modification hypothesis of atherogenesis: an update. J. Lipid Res. 50 Suppl. (Suppl.), S376-S381.
<https://doi.org/10.1194/jlr.R800087-JLR200>
33. , J. L. (1981) Iron and the sex difference in heart disease risk. Lancet 1, 1293-1294.
<https://doi.org/10.1016/S0140-6736(81)92463-6>
34. , J. L., Zacharski, L. R. (2001) Hereditary haemochromatosis and the hypothesis that iron depletion protects against ischemic heart disease. Eur J. Clin. Invest. 31, 375-377.
<https://doi.org/10.1046/j.1365-2362.2001.00830.x>
35. , X., Li, Y., Zhao, J. et al. (2023) Heme oxygenase-1 increases intracellular iron storage and suppresses inflammatory response of macrophages by inhibiting M1 polarization. Metallomics 15, mfad062.
<https://doi.org/10.1093/mtomcs/mfad062>
36. , I., Theurl, M, Seifert, M. et al. (2008) Autocrine formation of hepcidin induces iron retention in human monocytes. Blood 111, 2392-2399.
<https://doi.org/10.1182/blood-2007-05-090019>
37. , S., Kobayashi, Y., Goto, Y. et al. (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 42, 1530-1536.
38. , S., Yamabe, M., Yamaguchi, Y. et al. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer 26, 171-176.
<https://doi.org/10.1002/ijc.2910260208>
39. , F. (2021) Non-transferrin-bound iron in the spotlight: novel mechanistic insights into the vasculotoxic and atherosclerotic effect of iron. Antioxid. Redox Signal. 35, 387-414.
<https://doi.org/10.1089/ars.2020.8167>
40. , F., Muckenthaler, M. U., Da Silva, M. C. et al. (2014) Atherogenesis and iron: from epidemiology to cellular level. Front. Pharmacol. 5, 94.
<https://doi.org/10.3389/fphar.2014.00094>
41. , R. K. (2011) The many faces of the octahedral ferritin protein. Biometals 24, 489-500.
<https://doi.org/10.1007/s10534-011-9415-8>
42. , F., Traeger, L., Sigurslid, H. H. et al. (2020) The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol. Res. 153, 104664.
<https://doi.org/10.1016/j.phrs.2020.104664>
43. , Y., Li, Y., Wu, X. et al. (2021) Ironing out the details: how iron orchestrates macrophage polarization. Front. Immunol. 12, 669566.
<https://doi.org/10.3389/fimmu.2021.669566>
44. , X., Xu, X. D., Ma, M. Q. et al. (2024) The mechanisms of ferroptosis and its role in atherosclerosis. Biomed. Pharmacother. 171, 116112.
<https://doi.org/10.1016/j.biopha.2023.116112>

