Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 149-161

https://doi.org/10.14712/fb2025.0001

Iron Must Be in Haemin to Act as a Pro-Inflammatory Stimulus in Cultured Human THP-1 Monocytes

Jan Pláteník1ID, Peter Riško2, Richard Buchal1ID, Pavel J. Kraml2ID, Adriana Rybnikářová1ID, Martina Čierna1ID, Jana Potočková2

1Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
2Department of Internal Medicine, Third Faculty of Medicine, Charles University, and University Hospital Královské Vinohrady, Prague, Czech Republic

Received March 2025
Accepted August 2025

References

1. Bergmeyer, H. U. (ed.) (1974) Methods of Enzymatic Analysis 2nd Edition. Academic Press, New York.
2. Cabantchik, Z. I. (2014) Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front. Pharmacol. 5, 45. <https://doi.org/10.3389/fphar.2014.00045>
3. Chanput, W., Mes, J., Vreeburg, R. A. et al. (2010) Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food Funct. 1, 254-261. <https://doi.org/10.1039/c0fo00113a>
4. Chanput, W., Mes, J. J., Wichers, H. J. (2014) THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharmacol. 23, 37-45. <https://doi.org/10.1016/j.intimp.2014.08.002>
5. Colin, S., Chinetti-Gbaguidi, G., Staels, B. (2014) Macrophage phenotypes in atherosclerosis. Immunol. Rev. 262, 153-166. <https://doi.org/10.1111/imr.12218>
6. Cutone, A,. Frioni, A., Berlutti, F. et al. (2014) Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages. Biometals 27, 807-813. <https://doi.org/10.1007/s10534-014-9742-7>
7. Čierna, M., Buchal, R., Leníček, M. et al. (2025) Iron-dependent lysosomal LDL oxidation induces the expression of scavenger receptor A in human THP-1 monocytes. FEBS Open Bio. 15, 1246-1266. <https://doi.org/10.1002/2211-5463.70048>
8. Davies, J. M. (ed.) (2002) Basic Cell Culture Second Edition: A Practical Approach. Oxford University Press, New York.
9. de Winther, M. P., van Dijk, K. W., Havekes, L. M. et al. (2000) Macrophage scavenger receptor class A: a multifunctional receptor in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20, 290-297. <https://doi.org/10.1161/01.ATV.20.2.290>
10. Dugas, T. R., Morel, D. W., Harrison, E. H. (2000) Novel cell culture medium for use in oxidation experiments provides insights into mechanisms of endothelial cell-mediated oxidation of LDL. In Vitro Cell. Dev. Biol. Anim. 36, 571-577.
11. Epsztejn, S., Kakhlon, O., Glickstein, H. et al. (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal. Biochem. 248, 31-40. <https://doi.org/10.1006/abio.1997.2126>
12. Goldstein, J. L., Ho, Y. K., Basu, S. K. et al. (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. U. S. A. 76, 333-337. <https://doi.org/10.1073/pnas.76.1.333>
13. Habib, A., Finn, A. V. (2014) The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front. Pharmacol. 5, 195. <https://doi.org/10.3389/fphar.2014.00195>
14. Halliwell, B., Gutteridge, J. M. (2015) Free Radicals in Biology and Medicine. Oxford University Press, New York.
15. Hara, H., Tanishita, H., Yokoyama, S. et al. (1987) Induction of acetylated low density lipoprotein receptor and suppression of low density lipoprotein receptor on the cells of human monocytic leukemia cell line (THP-1 cell). Biochem. Biophys. Res. Commun. 146, 802-808. <https://doi.org/10.1016/0006-291X(87)90601-2>
16. Hider, R. C., Kong, X. (2013) Iron speciation in the cytosol: an overview. Dalton Trans. 42, 3220-3229. <https://doi.org/10.1039/C2DT32149A>
17. Imoto, S., Kono, M., Suzuki, T. et al. (2018) Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfus. Apher. Sci. 57, 524-531. <https://doi.org/10.1016/j.transci.2018.05.028>
18. Kadl, A., Meher, A. K., Sharma, P. R. et al. (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. 107, 737-746. <https://doi.org/10.1161/CIRCRESAHA.109.215715>
19. Kao, J. K., Wang, S. C., Ho, L. W. et al. (2020) M2-like polarization of THP-1 monocyte-derived macrophages under chronic iron overload. Ann. Hematol. 99, 431-441. <https://doi.org/10.1007/s00277-020-03916-8>
20. Kiechl, S., Willeit, J., Egger, G. et al. (1997) Body iron stores and the risk of carotid atherosclerosis: prospective results from the Bruneck study. Circulation 96, 3300-3307. <https://doi.org/10.1161/01.CIR.96.10.3300>
21. Kraml, P. J. (2017) The role of iron in the pathogenesis of atherosclerosis. Physiol. Res. 66 (Suppl. 1), S55-S67. <https://doi.org/10.33549/physiolres.933589>
22. Kraml, P. J., Klein, R. L., Huang, Y. et al. (2005) Iron loading increases cholesterol accumulation and macrophage scavenger receptor I expression in THP-1 mononuclear phagocytes. Metabolism 54, 453-459. <https://doi.org/10.1016/j.metabol.2004.10.012>
23. Lane, D. J., Merlot, A. M., Huang, M. L. et al. (2015) Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim. Biophys. Acta 1853, 1130-1144. <https://doi.org/10.1016/j.bbamcr.2015.01.021>
24. Mohd Yasin, Z. N., Mohd Idrus, F. N., Hoe, C. H. et al. (2022) Macrophage polarization in THP-1 cell line and primary monocytes: a systematic review. Differentiation 128, 67-82. <https://doi.org/10.1016/j.diff.2022.10.001>
25. Morgan, E. H., Huebers, H., Finch, C. A. (1978) Differences between the binding sites for iron binding and release in human and rat transferrin. Blood 52, 1219-1228. <https://doi.org/10.1182/blood.V52.6.1219.1219>
26. Nairz, M., Schroll, A., Demetz, E. et al. (2015) ‘Ride on the ferrous wheel’ – the cycle of iron in macrophages in health and disease. Immunobiology 220, 280-294. <https://doi.org/10.1016/j.imbio.2014.09.010>
27. Perry, M., Hamza, I. (2025) Heme and immunity: the heme oxygenase dichotomy. J. Inorg. Biochem. 267, 112844. <https://doi.org/10.1016/j.jinorgbio.2025.112844>
28. Piechota, M., Banaszewska, A., Dudziak, J. et al. (2012) Highly upregulated expression of CD36 and MSR1 in circulating monocytes of patients with acute coronary syndromes. Protein J. 31, 511-518. <https://doi.org/10.1007/s10930-012-9431-8>
29. Ponka, P. (1999) Cellular iron metabolism. Kidney Int. Suppl. 69, S2-S11. <https://doi.org/10.1046/j.1523-1755.1999.055Suppl.69002.x>
30. Potor, L., Hendrik, Z., Patsalos, A. et al. (2021) Oxidation of hemoglobin drives a proatherogenic polarization of macrophages in human atherosclerosis. Antioxid. Redox Signal. 35, 917-950. <https://doi.org/10.1089/ars.2020.8234>
31. Salonen, J. T., Nyyssönen, K., Korpela, H. et al. (1992) High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86, 803-811. <https://doi.org/10.1161/01.CIR.86.3.803>
32. Steinberg, D. (2009) The LDL modification hypothesis of atherogenesis: an update. J. Lipid Res. 50 Suppl. (Suppl.), S376-S381. <https://doi.org/10.1194/jlr.R800087-JLR200>
33. Sullivan, J. L. (1981) Iron and the sex difference in heart disease risk. Lancet 1, 1293-1294. <https://doi.org/10.1016/S0140-6736(81)92463-6>
34. Sullivan, J. L., Zacharski, L. R. (2001) Hereditary haemochromatosis and the hypothesis that iron depletion protects against ischemic heart disease. Eur J. Clin. Invest. 31, 375-377. <https://doi.org/10.1046/j.1365-2362.2001.00830.x>
35. Tang, X., Li, Y., Zhao, J. et al. (2023) Heme oxygenase-1 increases intracellular iron storage and suppresses inflammatory response of macrophages by inhibiting M1 polarization. Metallomics 15, mfad062. <https://doi.org/10.1093/mtomcs/mfad062>
36. Theurl, I., Theurl, M, Seifert, M. et al. (2008) Autocrine formation of hepcidin induces iron retention in human monocytes. Blood 111, 2392-2399. <https://doi.org/10.1182/blood-2007-05-090019>
37. Tsuchiya, S., Kobayashi, Y., Goto, Y. et al. (1982) Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 42, 1530-1536.
38. Tsuchiya, S., Yamabe, M., Yamaguchi, Y. et al. (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer 26, 171-176. <https://doi.org/10.1002/ijc.2910260208>
39. Vinchi, F. (2021) Non-transferrin-bound iron in the spotlight: novel mechanistic insights into the vasculotoxic and atherosclerotic effect of iron. Antioxid. Redox Signal. 35, 387-414. <https://doi.org/10.1089/ars.2020.8167>
40. Vinchi, F., Muckenthaler, M. U., Da Silva, M. C. et al. (2014) Atherogenesis and iron: from epidemiology to cellular level. Front. Pharmacol. 5, 94. <https://doi.org/10.3389/fphar.2014.00094>
41. Watt, R. K. (2011) The many faces of the octahedral ferritin protein. Biometals 24, 489-500. <https://doi.org/10.1007/s10534-011-9415-8>
42. Wunderer, F., Traeger, L., Sigurslid, H. H. et al. (2020) The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol. Res. 153, 104664. <https://doi.org/10.1016/j.phrs.2020.104664>
43. Xia, Y., Li, Y., Wu, X. et al. (2021) Ironing out the details: how iron orchestrates macrophage polarization. Front. Immunol. 12, 669566. <https://doi.org/10.3389/fimmu.2021.669566>
44. Xu, X., Xu, X. D., Ma, M. Q. et al. (2024) The mechanisms of ferroptosis and its role in atherosclerosis. Biomed. Pharmacother. 171, 116112. <https://doi.org/10.1016/j.biopha.2023.116112>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive