Fol. Biol. 2025, 71, 171-179
https://doi.org/10.14712/fb2025.0003
PCAT7 Enhances Doxorubicin Resistance of Osteosarcoma by Modulating TGF-β Signalling
References
1. , J. K., Gelderblom, H., Fiocco, M. et al. (2011) Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur. J. Cancer 47, 2431-2445.
<https://doi.org/10.1016/j.ejca.2011.05.030>
2. , J., Liu, Y., Zhao, X. et al. (2023) Research progress in the mechanism and treatment of osteosarcoma. Chin. Med. J. (Engl.) 136, 2412-2420.
<https://doi.org/10.1097/CM9.0000000000002800>
3. , H. K., Schiavone, K., Gouin, F. et al. (2018) Biology of bone sarcomas and new therapeutic developments. Calcif. Tissue Int. 102, 174-195.
<https://doi.org/10.1007/s00223-017-0372-2>
4. , H. K., Tellez-Gabriel, M., Heymann, D. (2017) Cancer stem cells in osteosarcoma. Cancer Lett. 386, 189-195.
<https://doi.org/10.1016/j.canlet.2016.11.019>
5. , R., Wang, G., Zheng, Y. et al. (2017) Long non-coding RNAs in osteosarcoma. Oncotarget 8, 20462-20475.
<https://doi.org/10.18632/oncotarget.14726>
6. , N., Zhong, Z. Y., Cun, Y. P. et al. (2013) Alteration of the microRNA expression profile in human osteosarcoma cells transfected with APE1 siRNA. Neoplasma 60, 384-394.
<https://doi.org/10.4149/neo_2013_050>
7. , X., Wei, H., Zhang, B. et al. (2023) Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front. Oncol. 13, 1117867.
<https://doi.org/10.3389/fonc.2023.1117867>
8. , M. J., He, P. J., Lin, X. Y. et al. (2020) MicroRNA-324-5p affects the radiotherapy response of cervical cancer via targeting ELAV-like RNA binding protein 1. Kaohsiung J. Med. Sci. 36, 965-972.
<https://doi.org/10.1002/kjm2.12277>
9. , B., Murillo, D., Rey, V. et al. (2022) Addressing doxorubicin resistance in bone sarcomas using novel drug-resistant models. Int. J. Mol. Sci. 23, 6425.
<https://doi.org/10.3390/ijms23126425>
10. , D. Y., Cabrera-Nieto, S. A., Caro-Sanchez, H. S. et al. (2022) An overview of resistance to chemotherapy in osteosarcoma and future perspectives. Cancer Drug Resist. 5, 762-793.
<https://doi.org/10.20517/cdr.2022.18>
11. , W., Qiu, M., Zhang, D. et al. (2022) LncRNA PCAT7 promotes non-small cell lung cancer progression by activating miR-486-5p/CDK4 axis-mediated cell cycle. Am. J. Transl. Res. 14, 3003-3016.
12. , D., Datta, A., Roychowdhury, T. et al. (2021) MicroRNA-324-5p-CUEDC2 axis mediates gain-of-function mutant p53-driven cancer stemness. Mol. Cancer Res. 19, 1635-1650.
<https://doi.org/10.1158/1541-7786.MCR-20-0717>
13. Diaz-Maroto, N., Sanz-Pamplona, R., Berdiel-Acer, M. et al. (2019) Noncanonical TGFβ pathway relieves the blockade of IL1β/TGFβ-mediated crosstalk between tumor and stroma: TGFBR1 and TAK1 inhibition in colorectal cancer. Clin. Cancer Res. 25, 4466-4479.
<https://doi.org/10.1158/1078-0432.CCR-18-3957>
14. , M., Kaczkowski, B., Ohshima, M. et al. (2017) Integrative CAGE and DNA methylation profiling identify epigenetically regulated genes in NSCLC. Mol. Cancer Res. 15, 1354-1365.
<https://doi.org/10.1158/1541-7786.MCR-17-0191>
15. , S., Chang, J., Li, Y. et al. (2017) Long non-coding RNAs for osteosarcoma in the mouse: a meta-analysis. Oncotarget 8, 100533-100544.
<https://doi.org/10.18632/oncotarget.20128>
16. , N., Dai, W., Li, Y. et al. (2020) LncRNA PCAT-1 upregulates RAP1A through modulating miR-324-5p and promotes survival in lung cancer. Arch. Med. Sci. 16, 1196-1206.
<https://doi.org/10.5114/aoms.2019.84235>
17. , E. G. E., Brand, A., Verdonschot, J. A. J. et al. (2022) Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 22, 1326.
<https://doi.org/10.1186/s12885-022-10434-5>
18. , M., Zhu, Y., Yu, H. (2021) Ginsenoside 20(S)-Rg3 suppresses cell viability in esophageal squamous cell carcinoma via modulating miR-324-5p-targeted PSME3. Hum. Exp. Toxicol. 40, 1974-1984.
<https://doi.org/10.1177/09603271211017311>
19. , Z., Chun-Lin, Z., Xiao-Long, M. (2017) Antisense lncRNA FOXF1-AS1 promotes migration and invasion of osteosarcoma cells through the FOXF1/MMP-2/-9 pathway. Int. J. Biol. Sci. 13, 1180-1191.
<https://doi.org/10.7150/ijbs.21722>
20. , C., Dai, Y., Wu, Z. et al. (2020) SMAD3/SP1 complex‐mediated constitutive active loop between lncRNA PCAT7 and TGF‐β signaling promotes prostate cancer bone metastasis. Mol. Oncol. 14, 808-828.
<https://doi.org/10.1002/1878-0261.12634>
21. , D., Yang, C., Yin, C. et al. (2020) LncRNA, Important player in bone development and disease. Endocr. Metab. Immune Disord. Drug Targets 20, 50-66.
<https://doi.org/10.2174/1871530319666190904161707>
22. , W., Liu, H., Tang, Y. et al. (2021) The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Mol. Cell. Biochem. 476, 109-123.
<https://doi.org/10.1007/s11010-020-03889-2>
23. , Q., Wu, Y., Xiao, J. et al. (2017a) Long non-coding RNA prostate cancer-associated transcript 7 (PCAT7) induces poor prognosis and promotes tumorigenesis by inhibiting mir-134-5p in non-small-cell lung (NSCLC). Med. Sci. Monit. 23, 6089-6098.
<https://doi.org/10.12659/MSM.907904>
24. , Y., Chang, Y., Cai, Y. (2020) Circ_0067835 sponges miR-324-5p to induce HMGA1 expression in endometrial carcinoma cells. J. Cell. Mol. Med. 24, 13927-13937.
<https://doi.org/10.1111/jcmm.15996>
25. , Y., Tao, Z., Qu, J. et al. (2017b) Long non-coding RNA PCAT7 regulates ELF2 signaling through inhibition of miR-134-5p in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 491, 374-381.
<https://doi.org/10.1016/j.bbrc.2017.07.093>
26. , G., Zhang, C., Luo, W. et al. (2019) Construction of microRNA-messenger networks for human osteosarcoma. J. Cell. Physiol. 234, 14145-14153.
<https://doi.org/10.1002/jcp.28107>
27. , N. W., Chen, X. M. (2017) Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. Biol. Chem. 292, 12375-12382.
<https://doi.org/10.1074/jbc.R116.760884>
28. , W. X., Koirala, P., Mo, Y. Y. (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36, 5661-5667.
<https://doi.org/10.1038/onc.2017.184>
29. , J. P., Sosa, L. D. V., Picech, F. et al. (2018) Trastuzumab inhibits pituitary tumor cell growth modulating the TGFB/SMAD2/3 pathway. Endocr. Relat. Cancer 25, 837-852.
<https://doi.org/10.1530/ERC-18-0067>
30. , D. R., Park, A., Dorman, M. J. et al. (2019) TGFβ blockade augments PD-1 inhibition to promote T-cell-mediated regression of pancreatic cancer. Mol. Cancer Ther. 18, 613-620.
<https://doi.org/10.1158/1535-7163.MCT-18-0850>
31. , X., Lei, Z., Lai, D. et al. (2020) Progress in the studies on the role of antisense long chain noncoding RNA in tumor development. Zhong Nan Da Xue Xue Bao Yi Xue Ban 45, 862-868. (In Chinese)
32. , Y., Song, Z., Rieser, J. et al. (2023) USP15 represses hepatocellular carcinoma progression by regulation of pathways of cell proliferation and cell migration: a system biology analysis. Cancers (Basel) 15, 1371.
<https://doi.org/10.3390/cancers15051371>
33. , J., Bielack, S. S. (2010) Osteosarcoma. Ann. Oncol. 21 (Suppl. 7), vii320-325.
<https://doi.org/10.1093/annonc/mdq276>
34. , X., Kong, S., Yang, Q. et al. (2020) PCAT-1 promotes cell growth by sponging miR-129 via MAP3K7/NF-κB pathway in multiple myeloma. J. Cell. Mol. Med. 24, 3492-3503.
<https://doi.org/10.1111/jcmm.15035>
35. , B., Park, S. H., Zhao, J. C. et al. (2019) Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J. Clin. Invest. 129, 569-582.
<https://doi.org/10.1172/JCI122367>
36. , F., Yu, Z., Wu, B. et al. (2020) LINC00319 promotes osteosarcoma progression by regulating the miR-455-3p/NFIB axis. J. Gene Med. 22, e3248.
<https://doi.org/10.1002/jgm.3248>
37. , B., Xu, A., Xu, J. et al. (2018) MicroRNA-324-5p regulates stemness, pathogenesis and sensitivity to bortezomib in multiple myeloma cells by targeting hedgehog signaling. Int. J. Cancer 142, 109-120.
<https://doi.org/10.1002/ijc.31041>
38. , Z., Liu, Z., Wu, S. (2017) Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget 8, 31465-31477.
<https://doi.org/10.18632/oncotarget.16356>
39. , J., Zhang, W. (2013) New molecular insights into osteosarcoma targeted therapy. Curr. Opin. Oncol. 25, 398-406.
<https://doi.org/10.1097/CCO.0b013e3283622c1b>
40. , Z., Li, X., Yang, Y. et al. (2016) Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis. 7, e2389.
<https://doi.org/10.1038/cddis.2016.272>
41. , J. H., Abdelmohsen, K., Gorospe, M. (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol. 34, 9-14.
<https://doi.org/10.1016/j.semcdb.2014.05.015>
42. , C. L., Zhu, K. P., Ma, X. L. (2017) Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett. 396, 66-75.
<https://doi.org/10.1016/j.canlet.2017.03.018>
43. , Z., Yu, T., Li, H. et al. (2023) Long noncoding RNA AROD inhibits host antiviral innate immunity via the miR-324-5p-CUEDC2 axis. Microbiol. Spectr. 11, e0420622.
<https://doi.org/10.1128/spectrum.04206-22>
44. , X., Zhou, Y., Chen, W. et al. (2018) Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell. Physiol. Biochem. 51, 1340-1353.
<https://doi.org/10.1159/000495552>
45. , T., Yu, T., Pan, M. et al. (2017) EZH2 alteration driven by microRNA-524-5p and microRNA-324-5p promotes cell proliferation and temozolomide resistance in glioma. Oncotarget 8, 96239-96248.
<https://doi.org/10.18632/oncotarget.21996>
46. , B., Li, L., Li, Y. et al. (2018) Long noncoding RNA SNHG12 mediates doxorubicin resistance of osteosarcoma via miR-320a/MCL1 axis. Biomed. Pharmacother. 106, 850-857.
<https://doi.org/10.1016/j.biopha.2018.07.003>
47. , J., Zhang, S., Luo, M. (2021) LncRNA PCAT7 promotes the malignant progression of breast cancer by regulating ErbB/PI3K/Akt pathway. Future Oncol. 17, 701-710.
<https://doi.org/10.2217/fon-2020-0273>
48. , K. P., Ma, X. L., Zhang, C. L. (2017) LncRNA ODRUL contributes to osteosarcoma progression through the miR-3182/MMP2 axis. Mol. Ther. 25, 2383-2393.
<https://doi.org/10.1016/j.ymthe.2017.06.027>

