Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2025, 71, 171-179

https://doi.org/10.14712/fb2025.0003

PCAT7 Enhances Doxorubicin Resistance of Osteosarcoma by Modulating TGF-β Signalling

Bin Fang1ID, Yongde Chen1ID, Zi Li2, Haitao Sun3ID, Sheng Wei4

1Department of Orthopedics, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430000, China
2Department of Orthopedics, The Fourth Hospital of Wuhan, 430000, China
3Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People’s Hospital, Wuxi, 214187, China
4Department of Orthopedics, Wuhan Hanyang Hospital, Wuhan University of Science and Technology. Wuhan 430050, China

Received June 2025
Accepted September 2025

References

1. Anninga, J. K., Gelderblom, H., Fiocco, M. et al. (2011) Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur. J. Cancer 47, 2431-2445. <https://doi.org/10.1016/j.ejca.2011.05.030>
2. Bian, J., Liu, Y., Zhao, X. et al. (2023) Research progress in the mechanism and treatment of osteosarcoma. Chin. Med. J. (Engl.) 136, 2412-2420. <https://doi.org/10.1097/CM9.0000000000002800>
3. Brown, H. K., Schiavone, K., Gouin, F. et al. (2018) Biology of bone sarcomas and new therapeutic developments. Calcif. Tissue Int. 102, 174-195. <https://doi.org/10.1007/s00223-017-0372-2>
4. Brown, H. K., Tellez-Gabriel, M., Heymann, D. (2017) Cancer stem cells in osteosarcoma. Cancer Lett. 386, 189-195. <https://doi.org/10.1016/j.canlet.2016.11.019>
5. Chen, R., Wang, G., Zheng, Y. et al. (2017) Long non-coding RNAs in osteosarcoma. Oncotarget 8, 20462-20475. <https://doi.org/10.18632/oncotarget.14726>
6. Dai, N., Zhong, Z. Y., Cun, Y. P. et al. (2013) Alteration of the microRNA expression profile in human osteosarcoma cells transfected with APE1 siRNA. Neoplasma 60, 384-394. <https://doi.org/10.4149/neo_2013_050>
7. Du, X., Wei, H., Zhang, B. et al. (2023) Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front. Oncol. 13, 1117867. <https://doi.org/10.3389/fonc.2023.1117867>
8. Fan, M. J., He, P. J., Lin, X. Y. et al. (2020) MicroRNA-324-5p affects the radiotherapy response of cervical cancer via targeting ELAV-like RNA binding protein 1. Kaohsiung J. Med. Sci. 36, 965-972. <https://doi.org/10.1002/kjm2.12277>
9. Gallego, B., Murillo, D., Rey, V. et al. (2022) Addressing doxorubicin resistance in bone sarcomas using novel drug-resistant models. Int. J. Mol. Sci. 23, 6425. <https://doi.org/10.3390/ijms23126425>
10. Garcia-Ortega, D. Y., Cabrera-Nieto, S. A., Caro-Sanchez, H. S. et al. (2022) An overview of resistance to chemotherapy in osteosarcoma and future perspectives. Cancer Drug Resist. 5, 762-793. <https://doi.org/10.20517/cdr.2022.18>
11. Geng, W., Qiu, M., Zhang, D. et al. (2022) LncRNA PCAT7 promotes non-small cell lung cancer progression by activating miR-486-5p/CDK4 axis-mediated cell cycle. Am. J. Transl. Res. 14, 3003-3016.
12. Ghatak, D., Datta, A., Roychowdhury, T. et al. (2021) MicroRNA-324-5p-CUEDC2 axis mediates gain-of-function mutant p53-driven cancer stemness. Mol. Cancer Res. 19, 1635-1650. <https://doi.org/10.1158/1541-7786.MCR-20-0717>
13. Guillen Diaz-Maroto, N., Sanz-Pamplona, R., Berdiel-Acer, M. et al. (2019) Noncanonical TGFβ pathway relieves the blockade of IL1β/TGFβ-mediated crosstalk between tumor and stroma: TGFBR1 and TAK1 inhibition in colorectal cancer. Clin. Cancer Res. 25, 4466-4479. <https://doi.org/10.1158/1078-0432.CCR-18-3957>
14. Horie, M., Kaczkowski, B., Ohshima, M. et al. (2017) Integrative CAGE and DNA methylation profiling identify epigenetically regulated genes in NSCLC. Mol. Cancer Res. 15, 1354-1365. <https://doi.org/10.1158/1541-7786.MCR-17-0191>
15. Hu, S., Chang, J., Li, Y. et al. (2017) Long non-coding RNAs for osteosarcoma in the mouse: a meta-analysis. Oncotarget 8, 100533-100544. <https://doi.org/10.18632/oncotarget.20128>
16. Huang, N., Dai, W., Li, Y. et al. (2020) LncRNA PCAT-1 upregulates RAP1A through modulating miR-324-5p and promotes survival in lung cancer. Arch. Med. Sci. 16, 1196-1206. <https://doi.org/10.5114/aoms.2019.84235>
17. Hurkmans, E. G. E., Brand, A., Verdonschot, J. A. J. et al. (2022) Pharmacogenetics of chemotherapy treatment response and -toxicities in patients with osteosarcoma: a systematic review. BMC Cancer 22, 1326. <https://doi.org/10.1186/s12885-022-10434-5>
18. Jiang, M., Zhu, Y., Yu, H. (2021) Ginsenoside 20(S)-Rg3 suppresses cell viability in esophageal squamous cell carcinoma via modulating miR-324-5p-targeted PSME3. Hum. Exp. Toxicol. 40, 1974-1984. <https://doi.org/10.1177/09603271211017311>
19. Kun-Peng, Z., Chun-Lin, Z., Xiao-Long, M. (2017) Antisense lncRNA FOXF1-AS1 promotes migration and invasion of osteosarcoma cells through the FOXF1/MMP-2/-9 pathway. Int. J. Biol. Sci. 13, 1180-1191. <https://doi.org/10.7150/ijbs.21722>
20. Lang, C., Dai, Y., Wu, Z. et al. (2020) SMAD3/SP1 complex‐mediated constitutive active loop between lncRNA PCAT7 and TGF‐β signaling promotes prostate cancer bone metastasis. Mol. Oncol. 14, 808-828. <https://doi.org/10.1002/1878-0261.12634>
21. Li, D., Yang, C., Yin, C. et al. (2020) LncRNA, Important player in bone development and disease. Endocr. Metab. Immune Disord. Drug Targets 20, 50-66. <https://doi.org/10.2174/1871530319666190904161707>
22. Lin, W., Liu, H., Tang, Y. et al. (2021) The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Mol. Cell. Biochem. 476, 109-123. <https://doi.org/10.1007/s11010-020-03889-2>
23. Liu, Q., Wu, Y., Xiao, J. et al. (2017a) Long non-coding RNA prostate cancer-associated transcript 7 (PCAT7) induces poor prognosis and promotes tumorigenesis by inhibiting mir-134-5p in non-small-cell lung (NSCLC). Med. Sci. Monit. 23, 6089-6098. <https://doi.org/10.12659/MSM.907904>
24. Liu, Y., Chang, Y., Cai, Y. (2020) Circ_0067835 sponges miR-324-5p to induce HMGA1 expression in endometrial carcinoma cells. J. Cell. Mol. Med. 24, 13927-13937. <https://doi.org/10.1111/jcmm.15996>
25. Liu, Y., Tao, Z., Qu, J. et al. (2017b) Long non-coding RNA PCAT7 regulates ELF2 signaling through inhibition of miR-134-5p in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 491, 374-381. <https://doi.org/10.1016/j.bbrc.2017.07.093>
26. Ma, G., Zhang, C., Luo, W. et al. (2019) Construction of micro­RNA-messenger networks for human osteosarcoma. J. Cell. Physiol. 234, 14145-14153. <https://doi.org/10.1002/jcp.28107>
27. Mathy, N. W., Chen, X. M. (2017) Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J. Biol. Chem. 292, 12375-12382. <https://doi.org/10.1074/jbc.R116.760884>
28. Peng, W. X., Koirala, P., Mo, Y. Y. (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36, 5661-5667. <https://doi.org/10.1038/onc.2017.184>
29. Petiti, J. P., Sosa, L. D. V., Picech, F. et al. (2018) Trastuzumab inhibits pituitary tumor cell growth modulating the TGFB/SMAD2/3 pathway. Endocr. Relat. Cancer 25, 837-852. <https://doi.org/10.1530/ERC-18-0067>
30. Principe, D. R., Park, A., Dorman, M. J. et al. (2019) TGFβ blockade augments PD-1 inhibition to promote T-cell-mediated regression of pancreatic cancer. Mol. Cancer Ther. 18, 613-620. <https://doi.org/10.1158/1535-7163.MCT-18-0850>
31. Qiu, X., Lei, Z., Lai, D. et al. (2020) Progress in the studies on the role of antisense long chain noncoding RNA in tumor development. Zhong Nan Da Xue Xue Bao Yi Xue Ban 45, 862-868. (In Chinese)
32. Ren, Y., Song, Z., Rieser, J. et al. (2023) USP15 represses hepatocellular carcinoma progression by regulation of pathways of cell proliferation and cell migration: a system biology analysis. Cancers (Basel) 15, 1371. <https://doi.org/10.3390/cancers15051371>
33. Ritter, J., Bielack, S. S. (2010) Osteosarcoma. Ann. Oncol. 21 (Suppl. 7), vii320-325. <https://doi.org/10.1093/annonc/mdq276>
34. Shen, X., Kong, S., Yang, Q. et al. (2020) PCAT-1 promotes cell growth by sponging miR-129 via MAP3K7/NF-κB pathway in multiple myeloma. J. Cell. Mol. Med. 24, 3492-3503. <https://doi.org/10.1111/jcmm.15035>
35. Song, B., Park, S. H., Zhao, J. C. et al. (2019) Targeting FOXA1-mediated repression of TGF-β signaling suppres­ses castration-resistant prostate cancer progression. J. Clin. Invest. 129, 569-582. <https://doi.org/10.1172/JCI122367>
36. Sun, F., Yu, Z., Wu, B. et al. (2020) LINC00319 promotes osteosarcoma progression by regulating the miR-455-3p/NFIB axis. J. Gene Med. 22, e3248. <https://doi.org/10.1002/jgm.3248>
37. Tang, B., Xu, A., Xu, J. et al. (2018) MicroRNA-324-5p regulates stemness, pathogenesis and sensitivity to bortezomib in multiple myeloma cells by targeting hedgehog signaling. Int. J. Cancer 142, 109-120. <https://doi.org/10.1002/ijc.31041>
38. Wang, Z., Liu, Z., Wu, S. (2017) Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget 8, 31465-31477. <https://doi.org/10.18632/oncotarget.16356>
39. Yang, J., Zhang, W. (2013) New molecular insights into osteosarcoma targeted therapy. Curr. Opin. Oncol. 25, 398-406. <https://doi.org/10.1097/CCO.0b013e3283622c1b>
40. Yang, Z., Li, X., Yang, Y. et al. (2016) Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis. 7, e2389. <https://doi.org/10.1038/cddis.2016.272>
41. Yoon, J. H., Abdelmohsen, K., Gorospe, M. (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin. Cell Dev. Biol. 34, 9-14. <https://doi.org/10.1016/j.semcdb.2014.05.015>
42. Zhang, C. L., Zhu, K. P., Ma, X. L. (2017) Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett. 396, 66-75. <https://doi.org/10.1016/j.canlet.2017.03.018>
43. Zhang, Z., Yu, T., Li, H. et al. (2023) Long noncoding RNA AROD inhibits host antiviral innate immunity via the miR-324-5p-CUEDC2 axis. Microbiol. Spectr. 11, e0420622. <https://doi.org/10.1128/spectrum.04206-22>
44. Zheng, X., Zhou, Y., Chen, W. et al. (2018) Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell. Physiol. Biochem. 51, 1340-1353. <https://doi.org/10.1159/000495552>
45. Zhi, T., Yu, T., Pan, M. et al. (2017) EZH2 alteration driven by microRNA-524-5p and microRNA-324-5p promotes cell proliferation and temozolomide resistance in glioma. Oncotarget 8, 96239-96248. <https://doi.org/10.18632/oncotarget.21996>
46. Zhou, B., Li, L., Li, Y. et al. (2018) Long noncoding RNA SNHG12 mediates doxorubicin resistance of osteosarcoma via miR-320a/MCL1 axis. Biomed. Pharmacother. 106, 850-857. <https://doi.org/10.1016/j.biopha.2018.07.003>
47. Zhou, J., Zhang, S., Luo, M. (2021) LncRNA PCAT7 promotes the malignant progression of breast cancer by regulating ErbB/PI3K/Akt pathway. Future Oncol. 17, 701-710. <https://doi.org/10.2217/fon-2020-0273>
48. Zhu, K. P., Ma, X. L., Zhang, C. L. (2017) LncRNA ODRUL contributes to osteosarcoma progression through the miR-3182/MMP2 axis. Mol. Ther. 25, 2383-2393. <https://doi.org/10.1016/j.ymthe.2017.06.027>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive