Folia Biologica
Journal of Cellular and Molecular Biology, Charles University 

Crossref logo

Fol. Biol. 2007, 53, 164-172

https://doi.org/10.14712/fb2007053050164

Modulation of the Oxidative Stress and Nuclear Factor κB Activation by Theaflavin 3,3’-gallate in the Rats Exposed to Cerebral Ischemia-Reperfusion

F. Cai1, C. Li2, Jiliang Wu1, Q. Min1, C. Ouyang1, M. Zheng1, S. Ma1, W. Yu1, F. Lin3

1Department of Pharmacology, Medical College, Xianning University, Xianning, People’s Republic of China
2Department of Medicine, Medical College, Xianning University, Xianning, People’s Republic of China
3Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China

Received June 2007
Accepted September 2007

References

1. Bannister, J. V., Bannister, W. H., Rotilio, G. (1987) Aspects of the structure, function, and applications of superoxide dismutase. Crit. Rev. Biochem. 22, 111-180. <https://doi.org/10.3109/10409238709083738>
2. Barone, F. C., Feuerstein, G. Z. (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J. Cereb. Blood Flow. Metab. 19, 819-834. <https://doi.org/10.1097/00004647-199908000-00001>
3. Blondeau, N., Widmann, C., Lazdunski, M., Heurteaux, C. (2001) Activation of the nuclear factor-κB is a key event in brain tolerance. J. Neurosci. 21, 4668-4677. <https://doi.org/10.1523/JNEUROSCI.21-13-04668.2001>
4. Candelario-Jalil, E., Gonzalez-Falcon, A., Garcia-Cabrera, M., Alvarez, D., Al-Dalain, S., Martinez, G., Leon, O. S., Springer, J. E. (2003) Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J. Neurochem. 86, 545-555. <https://doi.org/10.1046/j.1471-4159.2003.01812.x>
5. Cai, F., Li, C. R., Wu, J. L., Chen, J. G.., Liu, C., Min, Q., Yu, W., Ouyang, C. H., Chen, J. H. (2006) Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1. Mediators Inflamm. 2006, 30490. <https://doi.org/10.1155/MI/2006/30490>
6. Choi, Y. B., Yang, D. W., Kim, Y. I., Lee, K. S., Kim, B. S. (2004) Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Stroke 35, 246.
7. Clemens, J. A. (2000) Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radic. Biol. Med. 28, 1526-1531. <https://doi.org/10.1016/S0891-5849(00)00258-6>
8. Clemens, J. A., Stephenson, D. T., Dixon, E. P., Smalstig, E. B., Mincy, R. E., Rash, K. S., Little, S. P. (1997) Global cerebral ischemia activates nuclear factor-κB prior to evidence of DNA fragmentation. Mol. Brain Res. 48, 187-196. <https://doi.org/10.1016/S0169-328X(97)00092-2>
9. Clemens, M. R. (1991) Free radicals in chemical carcinogenesis. Klin. Wochenschr. 69, 1123-1134. <https://doi.org/10.1007/BF01645172>
10. Floyd, R. A. (1999) Antioxidants, oxidative stress, and de generative neurological disorders. Proc. Soc. Exp. Biol. Med. 222, 236-245. <https://doi.org/10.1046/j.1525-1373.1999.d01-140.x>
11. Ginsberg, M. D., Busto, R. (1989) Rodent models of cerebral ischemia. Stroke 20, 1627-1642. <https://doi.org/10.1161/01.STR.20.12.1627>
12. Gupta, S., Saha, B., Giri, A. K. (2002) Comparative antimutagenic and anticlastogenic effects of green tea and black tea: a review. Mutat. Res. 512, 37-65. <https://doi.org/10.1016/S1383-5742(02)00024-8>
13. Higdon, J. V., Frei, B. (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr. 43, 89-143. <https://doi.org/10.1080/10408690390826464>
14. Higuchi, M., Honda, T., Proske, R. J., Yeh, E. T. (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17, 2753-2760. <https://doi.org/10.1038/sj.onc.1202211>
15. Iadecola, C., Alexander, M. (2001) Cerebral ischemia and inflammation. Curr. Opin. Neurol. 14, 89-94. <https://doi.org/10.1097/00019052-200102000-00014>
16. Jozsef, L., Filep, J. G. (2003) Selenium-containing compounds attenuate peroxynitrite-mediated NF-κB and AP-1 activation and interleukin-8 gene and protein expression in human leukocytes. Free Radic. Biol. Med. 35, 1018-1027. <https://doi.org/10.1016/S0891-5849(03)00439-8>
17. Keller, J. N., Kindy, M. S., Holtsberg, F. W., St Clair, D. K., Yen, H. C., Germeyer, A., Steiner, S. M., Bruce-Keller, A. J., Hutchins, J. B. (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697. <https://doi.org/10.1523/JNEUROSCI.18-02-00687.1998>
18. Kitagawa, K., Matsumoto, M., Kuwabara, K., Takasawa K., Tanaka, S., Sasaki, T., Matsushita. K., Ohtsuki, T., Yanagihara, T., Hori, M. (2002) Protective effect of apolipoprotein E against ischemic neuronal injury is mediated through antioxidant action. J. Neurosci. Res. 68, 226-232. <https://doi.org/10.1002/jnr.10209>
19. Lerouet, D., Beray-Berthat, V., Palmier, B., Plotkine, M., Margaill, I. (2002) Changes in oxidative stress, iNOS activity and neutrophil infiltration in severe transient focal cerebral ischemia in rats. Brain Res. 958, 166-175. <https://doi.org/10.1016/S0006-8993(02)03685-5>
20. Leung, L. K., Su, Y., Chen, R., Zhang, Z., Huang, Y., Chen, Z. Y. (2001) Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr. 131, 2248-2251. <https://doi.org/10.1093/jn/131.9.2248>
21. Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91. <https://doi.org/10.1161/01.STR.20.1.84>
22. Lin, Y. L., Tsai, S. H., Lin, S. Y., Ho, C. T., Lin, J. K. (1999) Theaflavin-3,3’-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-κB in macrophages. Eur. J. Pharmacol. 367, 379-388. <https://doi.org/10.1016/S0014-2999(98)00953-4>
23. Liu, T., Clark, R. K., McDonnell, P. C., Young, P. R., White, R. F., Barone, F. C., Feuerstein, G. Z. (1994) Tumor necrosis factor-α expression in ischemic neurons. Stroke 25, 1481-1488. <https://doi.org/10.1161/01.STR.25.7.1481>
24. Mattson, M. P., Camandola, S. (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107, 247-254. <https://doi.org/10.1172/JCI11916>
25. Mattson, M. P., Goodman, Y., Luo, H., Fu, W., Furukawa, K. (1997) Activation of NF-κB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49, 681-697. <https://doi.org/10.1002/(SICI)1097-4547(19970915)49:6<681::AID-JNR3>3.0.CO;2-3>
26. Mukhtar, H., Ahmad, N. (2000) Tea polyphenols: prevention of cancer and optimizing health. Am. J. Clin. Nutr. 71, 1698S-1702S. <https://doi.org/10.1093/ajcn/71.6.1698S>
27. Ogita, K., Yoneda, Y. (1994) Selective potentiation of DNA binding activities of both activator protein 1 and cyclic AMP response element binding protein though in vivo activation of N-methyl-D-aspartate receptor complex in mouse brain. J. Neurochem. 63, 525-534. <https://doi.org/10.1046/j.1471-4159.1994.63020525.x>
28. Paoletti, F., Mocali, A. (1990) Determination of superoxide dismutase activity by purely chemical system based on NAD(P)H oxidation. Methods Enzymol. 18, 209-220. <https://doi.org/10.1016/0076-6879(90)86110-H>
29. Rodrigo, J., Fernandez, A. P., Serrano, J., Peinado, M. A., Martinez, A. (2005) The role of free radicals in cerebral hypoxia and ischemia. Free Radic. Biol. Med. 39, 26-50. <https://doi.org/10.1016/j.freeradbiomed.2005.02.010>
30. Schaller, B., Graf, R. (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J. Cereb. Blood Flow Metab. 24, 351-371. <https://doi.org/10.1097/00004647-200404000-00001>
31. Shen, W. H., Zhang, C. Y., Zhang, G. Y. (2003) Antioxidants attenuate reperfusion injury after global brain ischemia through inhibiting nuclear factor-κB activity in rats. Acta. Pharmacol. Sin. 24, 1125-1130.
32. Siesjo, B. K. (1992) Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J. Neurosurg. 77, 169-184. <https://doi.org/10.3171/jns.1992.77.2.0169>
33. Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H., Meldrum, B. S. (1984) Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J. Cereb. Blood Flow Metab. 4, 350-361. <https://doi.org/10.1038/jcbfm.1984.52>
34. Sun, Y., Oberley, L. W., Li, Y. (1988) A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34, 497-500. <https://doi.org/10.1093/clinchem/34.3.497>
35. Traystman, R. J., Kirsch, J. R., Koehler, R. C. (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 71, 1185-1195. <https://doi.org/10.1152/jappl.1991.71.4.1185>
36. Wang, T., Qin, L., Liu, B., Liu, Y., Wilson, B., Eling, T. E., Langenbach, R., Taniura, S., Hong, J. S. (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J. Neurochem. 88, 939-947. <https://doi.org/10.1046/j.1471-4159.2003.02242.x>
37. Warner, D. S., Sheng, H., Batinic, I. (2004) Oxidants, antioxidants and the ischemic brain. J. Exp. Biol. 207, 3221-3231. <https://doi.org/10.1242/jeb.01022>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive