Fol. Biol. 2012, 58, 49-56
https://doi.org/10.14712/fb2012058020049
Endogenous Morphine: Up-to-Date Review 2011
References
1. , M., Casares, F., Kream, R. M., Gluba, A., Rysz, J., Stefano, G. B. (2010) Morphine-mediated alteration of hypertension-related gene expression in human white blood cells and multilineage progenitor cells. J. Hum. Hypertens. 24, 713-720.
<https://doi.org/10.1038/jhh.2010.69>
2. , P., Osbourn, A. (2009) Plant-microbe interactions: chemical diversity in plant defense. Science 324, 746-748.
<https://doi.org/10.1126/science.1171661>
3. , H., Schweimer, K., Matecko, I., Rosch, P. (2008) Conformation, catalytic site, and enzymatic mechanism of the PR10 allergen-related enzyme norcoclaurine synthase. Biochem. J. 413, 281-290.
<https://doi.org/10.1042/BJ20080306>
4. , C., Fellermeier, M., Boettcher, C., Drager, B., Zenk, M. H. (2005) How human neuroblastoma cells make morphine. Proc. Natl. Acad. Sci. USA 102, 8495-8500.
<https://doi.org/10.1073/pnas.0503244102>
5. , J. J., Thrall, P. H. (2009) Coevolution of plants and their pathogens in natural habitats. Science 324, 755-756.
<https://doi.org/10.1126/science.1171663>
6. , P., Mantione, K. J., Zhu, W., Kream, R. M., Sheehan, M., Stefano, G. B. (2007) A functionally coupled μ3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J. Immunol. 179, 5839-5844.
<https://doi.org/10.4049/jimmunol.179.9.5839>
7. , R. A., Dvorkin, B., Klinger, H. P., Makman, M. H. (1994) Presence in neuroblastoma cells of a μ3 receptor with selectivity for opiate alkaloids but without affinity for opioid peptides. Brain Res. 667, 229-237.
<https://doi.org/10.1016/0006-8993(94)91500-8>
8. , J., Oka, K., Brossi, A., Rice, K. C., Spector, S. (1986) Presence and formation of codeine and morphine in the rat. Proc. Natl. Acad. Sci. USA 83, 4566-4567.
<https://doi.org/10.1073/pnas.83.12.4566>
9. , P. J., De Luca, V. (1994) Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J. Biol. Chem. 269, 26684-26690.
<https://doi.org/10.1016/S0021-9258(18)47073-1>
10. , P. J., De Luca, V. (1995) Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy. Phytochemistry 38, 1119-1126.
<https://doi.org/10.1016/0031-9422(94)00814-A>
11. , P. J., Park, S. U. (2003) Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry 64, 177-186.
<https://doi.org/10.1016/S0031-9422(03)00292-9>
12. , K., Rivera, A., Jacobsen, K. X., Hoistad, M., Leo, G., Horvath, T. L., Staines, W., De la Calle, A., Agnati, L. F. (2005) Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J. Neural. Transm. 112, 65-76.
<https://doi.org/10.1007/s00702-004-0158-3>
13. , A. R., Levy, A., Spector, S. (1976) Antibodies as a means of isolating and characterizing biologically active substances: Presence of a non-peptide morphine-like compound in the central nervous system. Proc. Natl. Acad. Sci. USA 73, 2132-2136.
<https://doi.org/10.1073/pnas.73.6.2132>
14. , A. R., Gershon, M. D., Spector, S. (1978) A nonpeptide morphine-like compound: immunocytochemical localization in the mouse brain. Science 199, 447-448.
<https://doi.org/10.1126/science.339350>
15. , A., Barrett, R. W., James, I. F., Lowney, L. I., Weitz, C., Knipmeyer, L. I., Rapoport, H. (1985) Morphine and other opiates from beef brain and adrenal. Proc. Natl. Acad. Sci. USA 82, 5203-5207.
<https://doi.org/10.1073/pnas.82.15.5203>
16. , F. P., Miller, G. P., Hanna, I. H., Sato, H., Martin, M. V. (2002) Oxidation of methoxyphenethylamines by cytochrome P450 2D6. Analysis of rate-limiting steps. J. Biol. Chem. 277, 33711-33719.
<https://doi.org/10.1074/jbc.M205146200>
17. , J. C., Olson, E. R., Cassidy, M. P., Selley, D. E., Pollack, G. M. (2007) Pharmacokinetics and pharmacodynamics of seven opioids in P-glycoprotein-competent mice: assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J. Pharmacol. Exp. Ther. 323, 346-355.
<https://doi.org/10.1124/jpet.107.119560>
18. , E., Clark, A. L., Kiss, A., Hahn, J. W., Wesselschmidt, R., Coscia, C. J., Belcheva, M. M. (2006) μand κ-opioids induce the differentiation of embryonic stem cells to neural progenitors. J. Biol. Chem. 281, 33749-33760.
<https://doi.org/10.1074/jbc.M603862200>
19. , H., Spector, S. (1988) Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsomes. Proc. Natl. Acad. Sci. USA. 85, 1267-1271.
<https://doi.org/10.1073/pnas.85.4.1267>
20. , H. W., Hughes, J. (1977) Opiate receptors and endogenous opioid peptides in tolerance and dependence. Adv. Exp. Med. Biol. 85B, 141-154.
<https://doi.org/10.1007/978-1-4615-9038-5_10>
21. , R. M., Stefano, G. B. (2006) De novo biosynthesis of morphine in animal cells: an evidence-based model. Med. Sci. Monit. 12, RA207-RA219.
22. , R. M., Sheehan, M., Cadet, P., Mantione, K. J., Zhu, W., Casares, F. M., Stefano, G. B. (2007) Persistence of evolutionary memory: primordial six-transmembrane helical domain μ opiate receptors selectively linked to endogenous morphine signaling. Med. Sci. Monit. 13, SC5-SC6.
23. , R. M., Mantione, K. J., Sheehan, M., Stefano, G. B. (2009) Morphine’s chemical messenger status in animals. Act. Nerv. Super. Rediviva 51, 153-161.
24. , R. M., Stefano, G. B. (2009) Endogenous morphine and nitric oxide coupled regulation of mitochondrial processes. Med. Sci. Monit. 15, RA263-RA268.
25. , R. M., Stefano, G. B. (2010) Interactive effects of endogenous morphine, nitric oxide, and ethanol on mitochondrial processes. Arch. Med. Sci. 6, 658-662.
<https://doi.org/10.5114/aoms.2010.17077>
26. , R. M., Stefano, G. B., Ptacek, R. (2010) Psychiatric implications of endogenous morphine: up-to-date review. Folia Biol. (Praha) 56, 231-241.
<https://doi.org/10.14712/fb2010056060231>
27. , H., Ptacek, R., Macek, M. (2010) The serotonin transporter gene (5-HTT) variant and psychiatric disorders: review of current literature. Neuro. Endocrinol. Lett. 31, 4-10.
28. , D. K., MacLeod, B. P., Loukanina, N., Nandi, O. I., Facchini, P. J. (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66, 1374-1393.
<https://doi.org/10.1016/j.phytochem.2005.04.029>
29. , D. K., Facchini, P. J. (2008) Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Curr. Opin. Biotechnol. 19, 173-180.
<https://doi.org/10.1016/j.copbio.2008.02.012>
30. , J. A., Waterfield, A. A., Hughes, J., Kosterlitz, H. W. (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267, 495-499.
<https://doi.org/10.1038/267495a0>
31. , M. H., Bilfinger, T. V., Stefano, G. B. (1995) Human granulocytes contain an opiate receptor mediating inhibition of cytokine-induced activation and chemotaxis. J. Immunol. 154, 1323-1330.
<https://doi.org/10.4049/jimmunol.154.3.1323>
32. , K. J., Cadet, P., Zhu, W., Kream, R. M., Sheehan, M., Fricchione, G. L., Goumon, Y., Esch, T., Stefano, G. B. (2008) Endogenous morphine signaling via nitric oxide regulates the expression of CYP2D6 and COMT: autocrine/paracrine feedback inhibition. Addict. Biol. 13, 118-123.
<https://doi.org/10.1111/j.1369-1600.2007.00072.x>
33. , T., Hiroi, T., Tsuzuki, D., Yamamoto, S., Narimatsu, S., Fukuda, T., Azuma, J., Funae, Y. (2004) Effect of genetic polymorphism on the metabolism of endogenous neuroactive substances, progesterone and p-tyramine, catalyzed by CYP2D6. Brain Res. Mol. Brain Res. 129, 117-123.
<https://doi.org/10.1016/j.molbrainres.2004.06.030>
34. , C., Schmidt, J., Brandsch, M., Drager, B., Zenk, M. H. (2004) Endogenous formation of morphine in human cells. Proc. Natl. Acad. Sci. USA 101, 14091-14096.
<https://doi.org/10.1073/pnas.0405430101>
35. , N., Liscombe, D. K., Facchini, P. J. (2004) Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. Plant J. 40, 302-313.
<https://doi.org/10.1111/j.1365-313X.2004.02210.x>
36. , K., Maruyama, W., Matsubara, K., Dostert, P., Minami, C., Kawai, M., Naoi, M. (2000) Enantio-selective occurrence of (S)-tetrahydropapaveroline in human brain. Neurosci. Lett. 283, 224-226.
<https://doi.org/10.1016/S0304-3940(00)00963-0>
37. , G. B., Digenis, A., Spector, S., Leung, M. K., Bilfinger, T. V., Makman, M. H., Scharrer, B., Abumrad, N. N. (1993) Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc. Natl. Acad. Sci. USA 90, 11099-11103.
<https://doi.org/10.1073/pnas.90.23.11099>
38. , G. B., Scharrer, B. (1994) Endogenous morphine and related opiates, a new class of chemical messengers. Adv. Neuroimmunol. 4, 57-68.
<https://doi.org/10.1016/S0960-5428(05)80001-4>
39. , G. B., Neenan, K., Cadet, P., Magazine, H. I., Bilfinger, T. V. (2001) Ischemic preconditioning – an opiate constitutive nitric oxide molecular hypothesis. Med. Sci. Monit. 7, 1357-1375.
40. , G. B., Kream, R. M. (2007) Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (Review). Int. J. Mol. Med. 20, 837-841.
41. , G. B., Cadet, P., Kream, R. M., Zhu, W. (2008a) The presence of endogenous morphine signaling in animals. Neurochem. Res. 33, 1933-1939.
<https://doi.org/10.1007/s11064-008-9674-0>
42. , G. B., Kream, R. M., Mantione, K. J., Sheehan, M., Cadet, P., Zhu, W., Bilfinger, T. V., Esch, T. (2008b) Endogenous morphine/nitric oxide-coupled regulation of cellular physiology and gene expression: implications for cancer biology. Semin. Cancer Biol. 18, 199-210.
<https://doi.org/10.1016/j.semcancer.2007.12.003>
43. , G. B., Kream, R. (2008) Endogenous opiates, opioids, and immune function: evolutionary brokerage of defensive behaviors. Semin. Cancer Biol. 18, 190-198.
<https://doi.org/10.1016/j.semcancer.2007.12.001>
44. , G. B., Kream, R. M. (2010) Dopamine, morphine, and nitric oxide: an evolutionary signaling triad. CNS Neurosci. Ther. 16, e124-e137.
<https://doi.org/10.1111/j.1755-5949.2009.00114.x>
45. , C. J., Lowney, L. I., Faull, K. F., Feistner, G., Goldstein, A. (1986) Morphine and codeine from mammalian brain. Proc. Natl. Acad. Sci. USA 83, 9784-9788.
<https://doi.org/10.1073/pnas.83.24.9784>
46. , C. J., Faull, K. F., Goldstein, A. (1987) Synthesis of the skeleton of the morphine molecule by mammalian liver. Nature 330, 674-677.
<https://doi.org/10.1038/330674a0>
47. , W., Cadet, P., Baggerman, G., Mantione, K. J., Stefano, G. B. (2005a) Human white blood cells synthesize morphine: CYP2D6 modulation. J. Immunol. 175, 7357-7362.
<https://doi.org/10.4049/jimmunol.175.11.7357>
48. , W., Mantione, K. J., Shen, L., Cadet, P., Esch, T., Goumon, Y., Bianchi, E., Sonetti, D., Stefano, G. B. (2005b) Tyrosine and tyramine increase endogenous ganglionic morphine and dopamine levels in vitro and in vivo: CYP2D6 and tyrosine hydroxylase modulation demonstrates a dopamine coupling. Med. Sci. Monit. 11, BR397-BR404.
49. , W., Mantione, K. J., Shen, L., Stefano, G. B. (2005c) In vivo and in vitro L-DOPA exposure increases ganglionic morphine levels. Med. Sci. Monit. 11, MS1-MS5.
50. , C. J., Smeele, K. M., Eerbeek, O. (2009) Mitochondrial hexokinase and cardioprotection of the intact heart. J. Bioenerg. Biomembr. 41, 181-185.
<https://doi.org/10.1007/s10863-009-9209-7>
