Fol. Biol. 2018, 64, 137-143

https://doi.org/10.14712/fb2018064040137

Comparison of Fully Automated and Semi-Automated Methods for Species Identification

E. Y. Kalafi1, M. K. Anuar1, M. K. Sakharkar2, S. K. Dhillon1

1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
2Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada

Received June 2018
Accepted September 2018

The process of manual species identification is a daunting task, so much so that the number of taxonomists is seen to be declining. In order to assist taxonomists, many methods and algorithms have been proposed to develop semi-automated and fully automated systems for species identification. While semi-automated tools would require manual intervention by a domain expert, fully automated tools are assumed to be not as reliable as manual or semiautomated identification tools. Hence, in this study we investigate the accuracy of fully automated and semi-automated models for species identification. We have built fully automated and semi-automated species classification models using the monogenean species image dataset. With respect to monogeneans’ morphology, they are differentiated based on the morphological characteristics of haptoral bars, anchors, marginal hooks and reproductive organs (male and female copulatory organs). Landmarks (in the semi-automated model) and shape morphometric features (in the fully automated model) were extracted from four monogenean species images, which were then classified using k-nearest neighbour and artificial neural network. In semi-automated models, a classification accuracy of 96.67 % was obtained using the k-nearest neighbour and 97.5 % using the artificial neural network, whereas in fully automated models, a classification accuracy of 90 % was obtained using the k-nearest neighbour and 98.8 % using the artificial neural network. As for the crossvalidation, semi-automated models performed at 91.2 %, whereas fully automated models performed slightly higher at 93.75 %.

Funding

This project was supported by the University of Malaya Research Program Grant (PRGS 2017-1) to the fourth author.

References

33 live references