Fol. Biol. 2019, 65, 212-220

https://doi.org/10.14712/fb2019065050212

Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data

E. Y. Kalafi1, N. A. M. Nor1, N. A. Taib2, M. D. Ganggayah1, C. Town3, Sarinder Kaur Dhillon1

1Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
2Department of Surgery, University Malaya Medical Centre, Kuala Lumpur, Malaysia
3Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

Received June 2019
Accepted August 2019

References

1. Abdullah, N. A., Wan Mahiyuddin, W. R., Muhammad, N. A., Ali, Z. M., Ibrahim, L., Ibrahim Tamim, N. S., Mustafa, A. N., Kamaluddin, M. A. (2013) Survival rate of breast cancer patients in Malaysia: a population-based study. Asian Pac. J. Cancer Prev. 14, 4591-4594. <https://doi.org/10.7314/APJCP.2013.14.8.4591>
2. Acuña, E., Rodriguez, C. (2004) The treatment of missing values and its effect on classifier accuracy. In: Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation, eds. Banks, D., House, L., McMorris, F. R., Arabie, P., Gaul, W. pp. 639-647. Springer Berlin, Heidelberg.
3. Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O. (2016) Deep learning for computational biology. Mol. Syst. Biol. 12, 878. <https://doi.org/10.15252/msb.20156651>
4. Bai, X., Latecki, L. J. (2008) Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1282-1292.
5. Beam, A. L., Kohane, I. S. (2018) Big data and machine learning in health care. JAMA, 319, 1317-1318. <https://doi.org/10.1001/jama.2017.18391>
6. Blumenthal, D. T., Artzi, M., Liberman, G., Bokstein, F., Aizenstein, O., Bashat, D. B. (2017) Classification of highgrade glioma into tumor and nontumor components using support vector machine. Am. J. Neuroradiol. 38, 908-914. <https://doi.org/10.3174/ajnr.A5127>
7. Boughorbel, S., Al-Ali, R., Elkum, N. (2016) Model comparison for breast cancer prognosis based on clinical data. PLoS One, 11, e0146413. <https://doi.org/10.1371/journal.pone.0146413>
8. Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. <https://doi.org/10.1023/A:1010933404324>
9. Chaturvedi, M., Vaitheeswaran, K., Satishkumar, K., Das, P., Stephen, S., Nandakumar, A. (2015) Time trends in breast cancer among Indian women population: an analysis of population based cancer registry data. Indian J. Surg. Oncol. 6, 427-434. <https://doi.org/10.1007/s13193-015-0467-z>
10. Delen, D., Walker, G., Kadam, A. (2005) Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34, 113-127. <https://doi.org/10.1016/j.artmed.2004.07.002>
11. Domingos, P. (2012) A few useful things to know about machine learning. Commun. ACM, 55, 78-87. <https://doi.org/10.1145/2347736.2347755>
12. Ganggayah, M. D., Taib, N. A., Har, Y. C., Lio, P., Dhillon, S. K. (2019) Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Med. Inform. Decis. Mak. 19, 48. <https://doi.org/10.1186/s12911-019-0801-4>
13. Fielding, S., Maclennan, G., Cook, J. A., Ramsay, C. R. (2008) A review of RCTs in four medical journals to assess the use of imputation to overcome missing data in quality of life outcomes. Trials 9, 51. <https://doi.org/10.1186/1745-6215-9-51>
14. Ghosh, R., Papapanagiotou, I., Boloor, K. (2014) A survey on research initiatives for healthcare clouds. In: Cloud Computing Applications for Quality Health Care Delivery, eds. Moumtzoglu, A., Kastania, A., IGI Global, pp. 1-18. Hershey, PA.
15. Han, J., Kamber, M. (2000) Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA.
16. Hirabayashi, Y., Zhang, M. (2009) Comparison of time trends in breast cancer incidence (1973-2002) in Asia, from cancer incidence in five continents, Vols IV-IX. Jap. J. Clin. Oncol. 39, 411-412. <https://doi.org/10.1093/jjco/hyp054>
17. Hosseini, S. M. H., Kesler, S. R. (2014) Multivariate pattern analysis of fMRI in breast cancer survivors and healthy women. J. Int. Neuropsychol. Soc. 20, 391-401. <https://doi.org/10.1017/S1355617713001173>
18. Huang, C.-L., Liao, H.-C., Chen, M.-C. (2008) Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Syst. Appl. 34, 578-587. <https://doi.org/10.1016/j.eswa.2006.09.041>
19. Idicula-Thomas, S., Kulkarni, A. J., Kulkarni, B. D., Jayaraman, V. K., Balaji, P. V. (2006) A support vector machinebased method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli. Bioinformatics 22, 278-284. <https://doi.org/10.1093/bioinformatics/bti810>
20. Kim, J., Shin, H. (2013) Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. J. Am. Med. Inform. Assoc. 20, 613-618. <https://doi.org/10.1136/amiajnl-2012-001570>
21. Kong, Y.-C., Bhoo-Pathy, N., Subramaniam, S., Bhoo-Pathy, N., Taib, N. A., Jamaris, S., Kaur, K., See, M. H., Ho, G. F., Yip, C. H. (2017) Advanced stage at presentation remains a major factor contributing to breast cancer survival disparity between public and private hospitals in a middle-income country. Int. J. Environ. Res. Public Health 14, 326-453. <https://doi.org/10.3390/ijerph14040427>
22. Li, H., Zhong, H., Boimel, P. J., Ben-Josef, E., Xiao, Y., Fan, Y. (2017) Deep convolutional neural networks for imaging based survival analysis of rectal cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 99, S183. <https://doi.org/10.1016/j.ijrobp.2017.06.458>
23. Lotfnezhad Afshar, H., Ahmadi, M., Roudbari, M., Sadoughi, F. (2015) Prediction of breast cancer survival through knowledge discovery in databases. Glob. J. Health Sci. 7, 392-398.
24. Nordin, N., Yaacob, N. M., Abdullah, N. H., Hairon, S. M. (2018) Survival time and prognostic factors for breast cancer among women in north-east peninsular Malaysia. Asian Pac. J. Cancer Prev. 19, 497-502.
25. Park, K., Ali, A., Kim, D., An, Y., Kim, M., Shin, H. (2013) Robust predictive model for evaluating breast cancer survivability. Eng. Appl. Artif. Intell. 26, 2194-2205. <https://doi.org/10.1016/j.engappai.2013.06.013>
26. Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Shu C. C.,C., Iyengar, S. S. (2018) A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv., 51, 92.
27. Powers, D. M. (2011) Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Tech. 2, 37-63.
28. Selvaraj, H., Selvi, S. T., Selvathi, D., Gewali, L. (2007) Brain MRI slices classification using least squares support vector machine. ICMED 1, 21–33.
29. Shickel, B., Tighe, P., Bihorac, A., & Rashidi, P. (2017). Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Inform. 1, 1.
30. Shukla, N., Hagenbuchner, M., Win, K. T., Yang, J. (2018) Breast cancer data analysis for survivability studies and prediction. Comput. Methods Programs Biomed. 155, 199-208. <https://doi.org/10.1016/j.cmpb.2017.12.011>
31. Sim, X., Ali, R. A., Wedren, S., Goh, D. L.-M., Tan, C.-S., Reilly, M., Hall, P., Chia, K. S. (2006) Ethnic differences in the time trend of female breast cancer incidence: Singapore, 1968-2002. BMC Cancer 6, 261. <https://doi.org/10.1186/1471-2407-6-261>
32. Sun, D., Wang, M., Li, A. (2018) A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE Trans. Comput. Biol. Bioinform. 1, 10.
33. Taib, N. A., Akmal, M., Mohamed, I., Yip, C.-H. (2011) Improvement in survival of breast cancer patients - trends over two time periods in a single institution in an Asia Pacific country, Malaysia. Asian Pac. J. Cancer Prev. 12, 345-349.
34. Vapnik, V. N. (1995) The Nature of Statistical Learning Theory. Berlin, Heidelberg: Springer-Verlag.
35. Zhang, S., Zhang, C., Yang, Q. (2003) Data preparation for data mining. Applied Artificial Intelligence, 17, 375-381. <https://doi.org/10.1080/713827180>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Submissions

Archive