Fol. Biol. 2019, 65, 237-245

https://doi.org/10.14712/fb2019065050237

Peroxynitrite-Induced Intracellular Ca2+ Depression in Cardiac Myocytes: Role of Sarco/Endoplasmic Reticulum Ca2+ Pump

V. Flores-Tamez1, B. Escalante1,2, Amelia Rios1

1Centro de Investigación y de Estudios Avanzados del IPN, Unidad-Monterrey, PIIT, Apodaca NL, México
2Universidad de Monterrey, San Pedro Garza García, NL, México

Received July 2019
Accepted September 2019

References

1. Borbely, A., Toth, A., Edes, I., Virag, L., Papp, J. G., Varro, A., Paulus, W. J., Van der Velden, J., Stienen, G. J., Papp, Z. (2005) Peroxynitrite-induced α-actinin nitration and contractile alterations in isolated human myocardial cells. Cardiovasc. Res. 67, 225-233. <https://doi.org/10.1016/j.cardiores.2005.03.025>
2. Brunner, F., Wolkart, G. (2003) Peroxynitrite-induced cardiac depression: role of myofilament desensitization and cGMP pathway. Cardiovas. Res. 60, 355-364. <https://doi.org/10.1016/j.cardiores.2003.08.001>
3. Digerness, S. B., Harris, K. D., Kirklin, J. W., Urthaler, F., Viera, L., Beckman, J. S., Darley-Usmar, V. (1999) Peroxynitrite irreversibly decreases diastolic and systolic function in cardiac muscle. Free Radic. Biol. Med. 27, 1386-1392. <https://doi.org/10.1016/S0891-5849(99)00184-7>
4. Gamez-Mendez, A. M., Vargas-Robles, H., Rios, A., Escalante, B. (2015) Oxidative stress-dependent coronary endothelial dysfunction in obese mice. PLoS One 10, 1-17. <https://doi.org/10.1371/journal.pone.0138609>
5. Ishida, H., Ichimori, K., Hirota, Y., Fukahori, M., Nakazawa, H. (1996) Peroxynitrite-induced cardiac myocyte injury. Free Radic. Biol. Med. 20, 343-350. <https://doi.org/10.1016/0891-5849(96)02060-6>
6. Kanaan, G. N., Harper, M. E. (2017) Cellular redox dysfunction in the development of cardiovascular diseases. Biochim. Biophys. Acta 1861, 2822-2829. <https://doi.org/10.1016/j.bbagen.2017.07.027>
7. Katori, T., Donzelli, S., Tocchetti, C. G., Miranda, K. M., Cormaci, G., Thomas, D. D., Ketner, E. A., Lee, M. J., Maneardi, D., Wink, D. A., Kass, D. A., Paolocci, N. (2006) Peroxynitrite and myocardial contractility: in vivo versus in vitro effects. Free Radic. Biol. Med. 41, 1606-1618. <https://doi.org/10.1016/j.freeradbiomed.2006.08.023>
8. Kohr, M. J., Traynham, C. J., Roof, S. R., Davis, J. P., Ziolo, M. T. (2010) cAMP-independent activation of protein kinase A by the peroxynitrite generator SIN-1 elicits positive inotropic effects in cardiomyocytes. J. Mol. Cell Cardiol. 48, 645-648. <https://doi.org/10.1016/j.yjmcc.2010.01.007>
9. Kohr, M. J., Roof, S. R., Zweier, J. L., Ziolo, M. T. (2012) Modulation of myocardial contraction by peroxynitrite. Front. Physiol. 3, 1-10. <https://doi.org/10.3389/fphys.2012.00468>
10. Levrand, S., Vannay-Bouchiche, C., Pesse, B., Pacher, P., Feihl, F., Waeber, B., Liaudet, L. (2006) Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic. Biol. Med. 41, 886-895. <https://doi.org/10.1016/j.freeradbiomed.2006.04.034>
11. Li, X., Li, W., Gao, Z., Li, H. (2016) Association of cardiac injury with iron-increased oxidative and nitrative modifications of the SERCA2a isoform of sarcoplasmic reticulum Ca2+-ATPase in diabetic rats. Biochimie 127, 144-152. <https://doi.org/10.1016/j.biochi.2016.05.011>
12. Lokuta, A. J., Maertz, N. A., Meethal, S. V., Potter, K. T., Kamp, T. J., Valdivia, H. H., Haworth, R. A. (2005) Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 111, 988-995. <https://doi.org/10.1161/01.CIR.0000156461.81529.D7>
13. Ma, X. L., Lopez, B. L., Liu, G. L., Christopher, T. A., Ischiropoulos, H. (1997) Peroxynitrite aggravates myocardial reperfusion injury in the isolated perfused rat heart. Cardiovasc. Res. 36, 195-204. <https://doi.org/10.1016/S0008-6363(97)00179-X>
14. Madamanchi, N. R., Runge, M. S. (2013) Redox signaling in cardiovascular health and disease. Free Radic. Biol. Med. 61, 473-501. <https://doi.org/10.1016/j.freeradbiomed.2013.04.001>
15. Matschke, V., Theiss, C., Matschke, J. (2019) Oxidative stress: the lowest common denominator of multiple diseases. Neural Regen. Res. 14, 238-241. <https://doi.org/10.4103/1673-5374.244780>
16. Mihm, M. J., Yu, F., Weinstein, D. M., Reiser, P. J., Bauer, J. A. (2002) Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: evidence for selective impairment of myofibrillar creatine kinase. Br. J. Pharmacol. 135, 581-588. <https://doi.org/10.1038/sj.bjp.0704495>
17. Mungrue, I. N., Gros, R., You, X. M., Pirani, A., Azad, A., Csont, T., Schulz, R., Butany, J., Stewart, D. J., Husain, M. (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J. Clin. Invest. 109, 735-743. <https://doi.org/10.1172/JCI0213265>
18. Nossuli, T. O., Hayward, R., Jensen, D., Scalia, R., Lefer, A. M. (1998) Mechanisms of cardioprotection by peroxynitrite in myocardial ischemia and reperfusion injury. Am. J. Physiol. 275, H509-519.
19. Pacher, P., Liaudet, L., Bai, P., Mabley, J. G., Kaminski, P. M., Virag, L., Deb, A., Szabo, E., Ungvari, Z., Wolin, M. S., Groves, J. T., Szabo, C. (2003) Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107, 896-904. <https://doi.org/10.1161/01.CIR.0000048192.52098.DD>
20. Pacher, P., Szabo, C. (2005) Role of poly(ADP-ribose) polymerase- 1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid. Redox Signal. 7, 1568-1580. <https://doi.org/10.1089/ars.2005.7.1568>
21. Pacher, P., Beckman, J. S., Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315-424. <https://doi.org/10.1152/physrev.00029.2006>
22. Snook, J. H., Li, J., Helmke, B. P., Guilford, W. H. (2008) Peroxynitrite inhibits myofibrillar protein function in an in vitro assay of motility. Free Radic. Biol. Med. 44, 14-23. <https://doi.org/10.1016/j.freeradbiomed.2007.09.004>
23. Stojanovic, M. O., Ziolo, M. T., Wahler, G. M., Wolska, B. M. (2001) Anti-adrenergic effects of nitric oxide donor SIN-1 in rat cardiac myocytes. Am. J. Physiol. Cell Physiol. 281, C342-C349. <https://doi.org/10.1152/ajpcell.2001.281.1.C342>
24. Wahler, G. M., Dollinger, S. J. (1995). Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am. J. Physiol. 268, C45-54. <https://doi.org/10.1152/ajpcell.1995.268.1.C45>
25. Yin, X. X., Shan, Q. X., Deng, C. Y., Borreau, J. P. (2002) Effect of SIN-1 in rat ventricular myocytes: interference with β-adrenergic stimulation. Life Sci. 71, 287-297. <https://doi.org/10.1016/S0024-3205(02)01625-9>
26. Yu, X. W., Liu, M. Y., Kennedy, R. H., Liu, S. J. (2005) Both cGMP and peroxynitrite mediate chronic interleukin-6-induced negative inotropy in adult rat ventricular myocytes. J. Physiol. 566, 341-353. <https://doi.org/10.1113/jphysiol.2005.087478>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Open access journal

Archive