Fol. Biol. 2019, 65, 212-220
https://doi.org/10.14712/fb2019065050212
Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data
Crossref Cited-by Linking
- Li Hengyun, Zhou Anqi, Zheng Xiang (Kevin), Xu Jian, Zhang Jing: Restaurant survival prediction using machine learning: Do the variance and sources of customers\u2019 online reviews matter?. Tourism Management 2025, 107, 105038. <https://doi.org/10.1016/j.tourman.2024.105038>
- Anastasi Giada, Franchini Michela, Pieroni Stefania, Buzzi Marina, Buzzi Maria Claudia, Leporini Barbara, Molinaro Sabrina: Machine learning techniques in breast cancer preventive diagnosis: a review. Multimed Tools Appl 2024, 83, 82805. <https://doi.org/10.1007/s11042-024-18775-y>
- Darbandi Mohammad Reza, Darbandi Mahsa, Darbandi Sara, Bado Igor, Hadizadeh Mohammad, Khorram Khorshid Hamid Reza: Artificial intelligence breakthroughs in pioneering early diagnosis and precision treatment of breast cancer: A multimethod study. European Journal of Cancer 2024, 209, 114227. <https://doi.org/10.1016/j.ejca.2024.114227>
- Li Jiaxin, Du Yao, Huang Gaoming, Zhang Chiyu, Ye Zhenfeng, Zhong Jinghui, Xi Xiaoqing, Huang Yawei: Predictive value of machine learning model based on CT values for urinary tract infection stones. iScience 2024, 27, 110843. <https://doi.org/10.1016/j.isci.2024.110843>
- Koh Herrick Yu Kan, Lam Ulysses Tsz Fung, Ban Kenneth Hon-Kim, Chen Ee Sin: Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers. Sci Rep 2024, 14. <https://doi.org/10.1038/s41598-024-71422-2>
- Yuan Han, Xu Hongzhen: Deep multi-modal fusion network with gated unit for breast cancer survival prediction. Computer Methods in Biomechanics and Biomedical Engineering 2024, 27, 883. <https://doi.org/10.1080/10255842.2023.2211188>
- Mooghal Mehwish, Nasir Saad, Arif Aiman, Khan Wajiha, Rashid Yasmin Abdul, Vohra Lubna M: Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review. Cancer Inform 2024, 23. <https://doi.org/10.1177/11769351241272389>
- Zou Jie, Shen Yan-Kun, Wu Shi-Nan, Wei Hong, Li Qing-Jian, Xu San Hua, Ling Qian, Kang Min, Liu Zhao-Lin, Huang Hui, Chen Xu, Wang Yi-Xin, Liao Xu-Lin, Tan Gang, Shao Yi: Prediction Model of Ocular Metastases in Gastric Adenocarcinoma: Machine Learning-Based Development and Interpretation Study. Technol Cancer Res Treat 2024, 23. <https://doi.org/10.1177/15330338231219352>
- Li Qiuying, Li Jiaxin, Chen Jiansong, Zhao Xu, Zhuang Jian, Zhong Guoping, Song Yamin, Lei Liming: A machine learning-based prediction model for postoperative delirium in cardiac valve surgery using electronic health records. BMC Cardiovasc Disord 2024, 24. <https://doi.org/10.1186/s12872-024-03723-3>
- Kumar Vinod, Prabha Chander, Sharma Preeti, Mittal Nitin, Askar S. S., Abouhawwash Mohamed: Unified deep learning models for enhanced lung cancer prediction with ResNet-50–101 and EfficientNet-B3 using DICOM images. BMC Med Imaging 2024, 24. <https://doi.org/10.1186/s12880-024-01241-4>
- Qiu Bin, Chen Hang, Zhang Enke, Ma Fuchun, An Gaili, Zong Yuan, Shang Liang, Zhang Yulian, Zhu Huolan: A machine learning prediction model for cancer risk in patients with type 2 diabetes based on clinical tests. THC 2024, 32, 1431. <https://doi.org/10.3233/THC-230385>
- Zhang Ge, Ma Chenwei, Yan Chaokun, Luo Huimin, Wang Jianlin, Liang Wenjuan, Luo Junwei: MSFN: a multi-omics stacked fusion network for breast cancer survival prediction. Front. Genet. 2024, 15. <https://doi.org/10.3389/fgene.2024.1378809>
- Chen Yan, Lin Fabin, Wang Kaifeng, Chen Feng, Wang Ruxian, Lai Minyun, Chen Chunmei, Wang Rui: Development of a predictive model for 1-year postoperative recovery in patients with lumbar disk herniation based on deep learning and machine learning. Front. Neurol. 2024, 15. <https://doi.org/10.3389/fneur.2024.1255780>
- Park Sang Won, Park Ye-Lin, Lee Eun-Gyeong, Chae Heejung, Park Phillip, Choi Dong-Woo, Choi Yeon Ho, Hwang Juyeon, Ahn Seohyun, Kim Keunkyun, Kim Woo Jin, Kong Sun-Young, Jung So-Youn, Kim Hyun-Jin: Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning. Cancers 2024, 16, 3799. <https://doi.org/10.3390/cancers16223799>
- Wu Yukun, Mo Qishan, Xie Yun, Zhang Junlong, Jiang Shuangjian, Guan Jianfeng, Qu Canhui, Wu Rongpei, Mo Chengqiang: A retrospective study using machine learning to develop predictive model to identify urinary infection stones in vivo. Urolithiasis 2023, 51. <https://doi.org/10.1007/s00240-023-01457-z>
- Sridharan Kannan, Ramanathan Murali, Al Banna Rashed: Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin. Int J Clin Pharm 2023, 45, 79. <https://doi.org/10.1007/s11096-022-01471-y>
- Pan Shan, Zhou Jianqing, Yang Wenjuan, Zhu Weili, Zhu Tao, Yang Baicai, Tang Xuedong: MiR-125b-5p Targets MTFP1 to Inhibit Cell Proliferation, Migration, and Invasion and Facilitate Cell Apoptosis in Endometrial Carcinoma. Mol Biotechnol 2023, 65, 961. <https://doi.org/10.1007/s12033-022-00601-1>
- Li Shutai: A study on the crucial indicators for breast cancer detection using machine learning algorithm. J. Phys.: Conf. Ser. 2023, 2646, 012042. <https://doi.org/10.1088/1742-6596/2646/1/012042>
- Liang Ping, Yang Jiannan, Wang Weilan, Yuan Guanjie, Han Min, Zhang Qingpeng, Li Zhen: Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease. IEEE J. Biomed. Health Inform. 2023, 27, 3677. <https://doi.org/10.1109/JBHI.2023.3266587>
- Nguyen Quynh Thi Nhu, Nguyen Phung‐Anh, Wang Chun‐Jung, Phuc Phan Thanh, Lin Ruo‐Kai, Hung Chin‐Sheng, Kuo Nei‐Hui, Cheng Yu‐Wen, Lin Shwu‐Jiuan, Hsieh Zong‐You, Cheng Chi‐Tsun, Hsu Min‐Huei, Hsu Jason C.: Machine learning approaches for predicting 5‐year breast cancer survival: A multicenter study. Cancer Science 2023, 114, 4063. <https://doi.org/10.1111/cas.15917>
- Wu Ruiyang, Luo Jing, Wan Hangyu, Zhang Haiyan, Yuan Yewei, Hu Huihua, Feng Jinyan, Wen Jing, Wang Yan, Li Junyan, Liang Qi, Gan Fengjiao, Zhang Gang, Gupta Dinesh: Evaluation of machine learning algorithms for the prognosis of breast cancer from the Surveillance, Epidemiology, and End Results database. PLoS ONE 2023, 18, e0280340. <https://doi.org/10.1371/journal.pone.0280340>
- Selvaraj Muthu Krishnan, Kaur Jasmeet, Murugan Avaniyapuram Kannan: Computational method for aromatase-related proteins using machine learning approach. PLoS ONE 2023, 18, e0283567. <https://doi.org/10.1371/journal.pone.0283567>
- Ilyinskikh Ekaterina N., Filatova Evgenia N., Samoylov Kirill V., Semenova Alina V., Axyonov Sergey V.: Applying decision tree algorithms to early differential diagnosis between different clinical forms of acute Lyme borreliosis and tick-borne encephalitis. Epidemiology and Infectious Diseases 2023, 28, 275. <https://doi.org/10.17816/EID601806>
- Pesapane Filippo, Battaglia Ottavia, Pellegrino Giuseppe, Mangione Elisa, Petitto Salvatore, Fiol Manna Eliza Del, Cazzaniga Laura, Nicosia Luca, Lazzeroni Matteo, Corso Giovanni, Fusco Nicola, Cassano Enrico: Advances in Breast Cancer Risk Modeling: Integrating Clinics, Imaging, Pathology and Artificial Intelligence for Personalized Risk Assessment. Future Oncol. 2023, 19, 2547. <https://doi.org/10.2217/fon-2023-0365>
- Song Wenzhu, Liu Yanfeng, Qiu Lixia, Qing Jianbo, Li Aizhong, Zhao Yan, Li Yafeng, Li Rongshan, Zhou Xiaoshuang: Machine learning-based warning model for chronic kidney disease in individuals over 40 years old in underprivileged areas, Shanxi Province. Front. Med. 2023, 9. <https://doi.org/10.3389/fmed.2022.930541>
- Shiner Audrey, Kiss Alex, Saednia Khadijeh, Jerzak Katarzyna J., Gandhi Sonal, Lu Fang-I, Emmenegger Urban, Fleshner Lauren, Lagree Andrew, Alera Marie Angeli, Bielecki Mateusz, Law Ethan, Law Brianna, Kam Dylan, Klein Jonathan, Pinard Christopher J., Shenfield Alex, Sadeghi-Naini Ali, Tran William T.: Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning. Genes 2023, 14, 1768. <https://doi.org/10.3390/genes14091768>
- Chen Shiyu, Hu Weiwei, Yang Yuhui, Cai Jiaxin, Luo Yaqi, Gong Lingmin, Li Yemian, Si Aima, Zhang Yuxiang, Liu Sitong, Mi Baibing, Pei Leilei, Zhao Yaling, Chen Fangyao: Predicting Six-Month Re-Admission Risk in Heart Failure Patients Using Multiple Machine Learning Methods: A Study Based on the Chinese Heart Failure Population Database. JCM 2023, 12, 870. <https://doi.org/10.3390/jcm12030870>
- Seth Ishith, Bulloch Gabriella, Joseph Konrad, Hunter-Smith David J., Rozen Warren Matthew: Use of Artificial Intelligence in the Advancement of Breast Surgery and Implications for Breast Reconstruction: A Narrative Review. JCM 2023, 12, 5143. <https://doi.org/10.3390/jcm12155143>
- Siddiqui Arif Jamal, Jahan Sadaf, Siddiqui Maqsood Ahmed, Khan Andleeb, Alshahrani Mohammed Merae, Badraoui Riadh, Adnan Mohd: Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Design. Mathematics 2023, 11, 1464. <https://doi.org/10.3390/math11061464>
- Varillas-Delgado David, Del Coso Juan, Gutiérrez-Hellín Jorge, Aguilar-Navarro Millán, Muñoz Alejandro, Maestro Antonio, Morencos Esther: Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022, 122, 1811. <https://doi.org/10.1007/s00421-022-04945-z>
- Kaur Ishleen, Doja M.N., Ahmad Tanvir: Data mining and machine learning in cancer survival research: An overview and future recommendations. Journal of Biomedical Informatics 2022, 128, 104026. <https://doi.org/10.1016/j.jbi.2022.104026>
- Roman-Belmonte Juan M., De la Corte-Rodriguez Hortensia, Rodriguez-Merchan E. Carlos, Vazquez-Sasot Aranzazu, Rodriguez-Damiani Beatriz A., Resino-Luís Cristina, Sanchez-Laguna Francisco: The three horizons model applied to medical science. Postgraduate Medicine 2022, 134, 776. <https://doi.org/10.1080/00325481.2022.2124086>
- Ke Zi-Rui, Chen Wei, Li Man-Xiu, Wu Shun, Jin Li-Ting, Wang Tie-Jun: Added value of systemic inflammation markers for monitoring response to neoadjuvant chemotherapy in breast cancer patients. WJCC 2022, 10, 3389. <https://doi.org/10.12998/wjcc.v10.i11.3389>
- Gusev A.V., Vladzimirskiy A.V., Gavrilenko G.G.: Methodical approach and recommendations for scientific description of creation and validation of machine learning model. Med. Tech. Asses. and Choice 2022, 12. <https://doi.org/10.17116/medtech20224403112>
- Huang Xue, Zhang Yukun, He Du, Lai Lin, Chen Jun, Zhang Tao, Mao Huilin: Machine Learning-Based Shear Wave Elastography Elastic Index (SWEEI) in Predicting Cervical Lymph Node Metastasis of Papillary Thyroid Microcarcinoma: A Comparative Analysis of Five Practical Prediction Models. CMAR 2022, Volume 14, 2847. <https://doi.org/10.2147/CMAR.S383152>
- Xiong Fan, Cao Xuyong, Shi Xiaolin, Long Ze, Liu Yaosheng, Lei Mingxing: A machine learning–Based model to predict early death among bone metastatic breast cancer patients: A large cohort of 16,189 patients. Front. Cell Dev. Biol. 2022, 10. <https://doi.org/10.3389/fcell.2022.1059597>
- Peng Yunsong, Cheng Ziliang, Gong Chang, Zheng Chushan, Zhang Xiang, Wu Zhuo, Yang Yaping, Yang Xiaodong, Zheng Jian, Shen Jun: Pretreatment DCE-MRI-Based Deep Learning Outperforms Radiomics Analysis in Predicting Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Front. Oncol. 2022, 12. <https://doi.org/10.3389/fonc.2022.846775>
- Hanis Tengku Muhammad, Ruhaiyem Nur Intan Raihana, Arifin Wan Nor, Haron Juhara, Wan Abdul Rahman Wan Faiziah, Abdullah Rosni, Musa Kamarul Imran: Over-the-Counter Breast Cancer Classification Using Machine Learning and Patient Registration Records. Diagnostics 2022, 12, 2826. <https://doi.org/10.3390/diagnostics12112826>
- Kang Jianguo, Yu Ziwang, Wu Shaohua, Zhang Yanjun, Gao Ping: Feasibility analysis of extreme learning machine for predicting thermal conductivity of rocks. Environ Earth Sci 2021, 80. <https://doi.org/10.1007/s12665-021-09745-w>
- Kaur Ishleen, Doja M. N., Ahmad Tanvir, Ahmad Musheer, Hussain Amir, Nadeem Ahmed, Abd El-Latif Ahmed A., Doulamis Anastasios D.: An Integrated \u2009Approach for Cancer Survival Prediction Using Data Mining Techniques. Computational Intelligence and Neuroscience 2021, 2021, 1. <https://doi.org/10.1155/2021/6342226>
- Li Jiaxin, Zhou Zijun, Dong Jianyu, Fu Ying, Li Yuan, Luan Ze, Peng Xin, Baltzer Pascal A. T.: Predicting breast cancer 5-year survival using machine learning: A systematic review. PLoS ONE 2021, 16, e0250370. <https://doi.org/10.1371/journal.pone.0250370>
- Kalafi Elham Yousef, Jodeiri Ata, Setarehdan Seyed Kamaledin, Lin Ng Wei, Rahmat Kartini, Taib Nur Aishah, Ganggayah Mogana Darshini, Dhillon Sarinder Kaur: Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks. Diagnostics 2021, 11, 1859. <https://doi.org/10.3390/diagnostics11101859>