Fol. Biol. 2019, 65, 212-220

https://doi.org/10.14712/fb2019065050212

Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data

E. Y. Kalafi1, N. A. M. Nor1, N. A. Taib2, M. D. Ganggayah1, C. Town3, Sarinder Kaur Dhillon1

1Data Science and Bioinformatics Laboratory, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
2Department of Surgery, University Malaya Medical Centre, Kuala Lumpur, Malaysia
3Computer Laboratory, University of Cambridge, Cambridge, United Kingdom

Received June 2019
Accepted August 2019

Crossref Cited-by Linking

  • Li Hengyun, Zhou Anqi, Zheng Xiang (Kevin), Xu Jian, Zhang Jing: Restaurant survival prediction using machine learning: Do the variance and sources of customers\u2019 online reviews matter?. Tourism Management 2025, 107, 105038. <https://doi.org/10.1016/j.tourman.2024.105038>
  • Anastasi Giada, Franchini Michela, Pieroni Stefania, Buzzi Marina, Buzzi Maria Claudia, Leporini Barbara, Molinaro Sabrina: Machine learning techniques in breast cancer preventive diagnosis: a review. Multimed Tools Appl 2024, 83, 82805. <https://doi.org/10.1007/s11042-024-18775-y>
  • Darbandi Mohammad Reza, Darbandi Mahsa, Darbandi Sara, Bado Igor, Hadizadeh Mohammad, Khorram Khorshid Hamid Reza: Artificial intelligence breakthroughs in pioneering early diagnosis and precision treatment of breast cancer: A multimethod study. European Journal of Cancer 2024, 209, 114227. <https://doi.org/10.1016/j.ejca.2024.114227>
  • Li Jiaxin, Du Yao, Huang Gaoming, Zhang Chiyu, Ye Zhenfeng, Zhong Jinghui, Xi Xiaoqing, Huang Yawei: Predictive value of machine learning model based on CT values for urinary tract infection stones. iScience 2024, 27, 110843. <https://doi.org/10.1016/j.isci.2024.110843>
  • Koh Herrick Yu Kan, Lam Ulysses Tsz Fung, Ban Kenneth Hon-Kim, Chen Ee Sin: Machine learning optimized DriverDetect software for high precision prediction of deleterious mutations in human cancers. Sci Rep 2024, 14. <https://doi.org/10.1038/s41598-024-71422-2>
  • Yuan Han, Xu Hongzhen: Deep multi-modal fusion network with gated unit for breast cancer survival prediction. Computer Methods in Biomechanics and Biomedical Engineering 2024, 27, 883. <https://doi.org/10.1080/10255842.2023.2211188>
  • Mooghal Mehwish, Nasir Saad, Arif Aiman, Khan Wajiha, Rashid Yasmin Abdul, Vohra Lubna M: Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review. Cancer Inform 2024, 23. <https://doi.org/10.1177/11769351241272389>
  • Zou Jie, Shen Yan-Kun, Wu Shi-Nan, Wei Hong, Li Qing-Jian, Xu San Hua, Ling Qian, Kang Min, Liu Zhao-Lin, Huang Hui, Chen Xu, Wang Yi-Xin, Liao Xu-Lin, Tan Gang, Shao Yi: Prediction Model of Ocular Metastases in Gastric Adenocarcinoma: Machine Learning-Based Development and Interpretation Study. Technol Cancer Res Treat 2024, 23. <https://doi.org/10.1177/15330338231219352>
  • Li Qiuying, Li Jiaxin, Chen Jiansong, Zhao Xu, Zhuang Jian, Zhong Guoping, Song Yamin, Lei Liming: A machine learning-based prediction model for postoperative delirium in cardiac valve surgery using electronic health records. BMC Cardiovasc Disord 2024, 24. <https://doi.org/10.1186/s12872-024-03723-3>
  • Kumar Vinod, Prabha Chander, Sharma Preeti, Mittal Nitin, Askar S. S., Abouhawwash Mohamed: Unified deep learning models for enhanced lung cancer prediction with ResNet-50–101 and EfficientNet-B3 using DICOM images. BMC Med Imaging 2024, 24. <https://doi.org/10.1186/s12880-024-01241-4>
  • Qiu Bin, Chen Hang, Zhang Enke, Ma Fuchun, An Gaili, Zong Yuan, Shang Liang, Zhang Yulian, Zhu Huolan: A machine learning prediction model for cancer risk in patients with type 2 diabetes based on clinical tests. THC 2024, 32, 1431. <https://doi.org/10.3233/THC-230385>
  • Zhang Ge, Ma Chenwei, Yan Chaokun, Luo Huimin, Wang Jianlin, Liang Wenjuan, Luo Junwei: MSFN: a multi-omics stacked fusion network for breast cancer survival prediction. Front. Genet. 2024, 15. <https://doi.org/10.3389/fgene.2024.1378809>
  • Chen Yan, Lin Fabin, Wang Kaifeng, Chen Feng, Wang Ruxian, Lai Minyun, Chen Chunmei, Wang Rui: Development of a predictive model for 1-year postoperative recovery in patients with lumbar disk herniation based on deep learning and machine learning. Front. Neurol. 2024, 15. <https://doi.org/10.3389/fneur.2024.1255780>
  • Park Sang Won, Park Ye-Lin, Lee Eun-Gyeong, Chae Heejung, Park Phillip, Choi Dong-Woo, Choi Yeon Ho, Hwang Juyeon, Ahn Seohyun, Kim Keunkyun, Kim Woo Jin, Kong Sun-Young, Jung So-Youn, Kim Hyun-Jin: Mortality Prediction Modeling for Patients with Breast Cancer Based on Explainable Machine Learning. Cancers 2024, 16, 3799. <https://doi.org/10.3390/cancers16223799>
  • Wu Yukun, Mo Qishan, Xie Yun, Zhang Junlong, Jiang Shuangjian, Guan Jianfeng, Qu Canhui, Wu Rongpei, Mo Chengqiang: A retrospective study using machine learning to develop predictive model to identify urinary infection stones in vivo. Urolithiasis 2023, 51. <https://doi.org/10.1007/s00240-023-01457-z>
  • Sridharan Kannan, Ramanathan Murali, Al Banna Rashed: Evaluation of supervised machine learning algorithms in predicting the poor anticoagulation control and stable weekly doses of warfarin. Int J Clin Pharm 2023, 45, 79. <https://doi.org/10.1007/s11096-022-01471-y>
  • Pan Shan, Zhou Jianqing, Yang Wenjuan, Zhu Weili, Zhu Tao, Yang Baicai, Tang Xuedong: MiR-125b-5p Targets MTFP1 to Inhibit Cell Proliferation, Migration, and Invasion and Facilitate Cell Apoptosis in Endometrial Carcinoma. Mol Biotechnol 2023, 65, 961. <https://doi.org/10.1007/s12033-022-00601-1>
  • Li Shutai: A study on the crucial indicators for breast cancer detection using machine learning algorithm. J. Phys.: Conf. Ser. 2023, 2646, 012042. <https://doi.org/10.1088/1742-6596/2646/1/012042>
  • Liang Ping, Yang Jiannan, Wang Weilan, Yuan Guanjie, Han Min, Zhang Qingpeng, Li Zhen: Deep Learning Identifies Intelligible Predictors of Poor Prognosis in Chronic Kidney Disease. IEEE J. Biomed. Health Inform. 2023, 27, 3677. <https://doi.org/10.1109/JBHI.2023.3266587>
  • Nguyen Quynh Thi Nhu, Nguyen Phung‐Anh, Wang Chun‐Jung, Phuc Phan Thanh, Lin Ruo‐Kai, Hung Chin‐Sheng, Kuo Nei‐Hui, Cheng Yu‐Wen, Lin Shwu‐Jiuan, Hsieh Zong‐You, Cheng Chi‐Tsun, Hsu Min‐Huei, Hsu Jason C.: Machine learning approaches for predicting 5‐year breast cancer survival: A multicenter study. Cancer Science 2023, 114, 4063. <https://doi.org/10.1111/cas.15917>
  • Wu Ruiyang, Luo Jing, Wan Hangyu, Zhang Haiyan, Yuan Yewei, Hu Huihua, Feng Jinyan, Wen Jing, Wang Yan, Li Junyan, Liang Qi, Gan Fengjiao, Zhang Gang, Gupta Dinesh: Evaluation of machine learning algorithms for the prognosis of breast cancer from the Surveillance, Epidemiology, and End Results database. PLoS ONE 2023, 18, e0280340. <https://doi.org/10.1371/journal.pone.0280340>
  • Selvaraj Muthu Krishnan, Kaur Jasmeet, Murugan Avaniyapuram Kannan: Computational method for aromatase-related proteins using machine learning approach. PLoS ONE 2023, 18, e0283567. <https://doi.org/10.1371/journal.pone.0283567>
  • Ilyinskikh Ekaterina N., Filatova Evgenia N., Samoylov Kirill V., Semenova Alina V., Axyonov Sergey V.: Applying decision tree algorithms to early differential diagnosis between different clinical forms of acute Lyme borreliosis and tick-borne encephalitis. Epidemiology and Infectious Diseases 2023, 28, 275. <https://doi.org/10.17816/EID601806>
  • Pesapane Filippo, Battaglia Ottavia, Pellegrino Giuseppe, Mangione Elisa, Petitto Salvatore, Fiol Manna Eliza Del, Cazzaniga Laura, Nicosia Luca, Lazzeroni Matteo, Corso Giovanni, Fusco Nicola, Cassano Enrico: Advances in Breast Cancer Risk Modeling: Integrating Clinics, Imaging, Pathology and Artificial Intelligence for Personalized Risk Assessment. Future Oncol. 2023, 19, 2547. <https://doi.org/10.2217/fon-2023-0365>
  • Song Wenzhu, Liu Yanfeng, Qiu Lixia, Qing Jianbo, Li Aizhong, Zhao Yan, Li Yafeng, Li Rongshan, Zhou Xiaoshuang: Machine learning-based warning model for chronic kidney disease in individuals over 40 years old in underprivileged areas, Shanxi Province. Front. Med. 2023, 9. <https://doi.org/10.3389/fmed.2022.930541>
  • Shiner Audrey, Kiss Alex, Saednia Khadijeh, Jerzak Katarzyna J., Gandhi Sonal, Lu Fang-I, Emmenegger Urban, Fleshner Lauren, Lagree Andrew, Alera Marie Angeli, Bielecki Mateusz, Law Ethan, Law Brianna, Kam Dylan, Klein Jonathan, Pinard Christopher J., Shenfield Alex, Sadeghi-Naini Ali, Tran William T.: Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning. Genes 2023, 14, 1768. <https://doi.org/10.3390/genes14091768>
  • Chen Shiyu, Hu Weiwei, Yang Yuhui, Cai Jiaxin, Luo Yaqi, Gong Lingmin, Li Yemian, Si Aima, Zhang Yuxiang, Liu Sitong, Mi Baibing, Pei Leilei, Zhao Yaling, Chen Fangyao: Predicting Six-Month Re-Admission Risk in Heart Failure Patients Using Multiple Machine Learning Methods: A Study Based on the Chinese Heart Failure Population Database. JCM 2023, 12, 870. <https://doi.org/10.3390/jcm12030870>
  • Seth Ishith, Bulloch Gabriella, Joseph Konrad, Hunter-Smith David J., Rozen Warren Matthew: Use of Artificial Intelligence in the Advancement of Breast Surgery and Implications for Breast Reconstruction: A Narrative Review. JCM 2023, 12, 5143. <https://doi.org/10.3390/jcm12155143>
  • Siddiqui Arif Jamal, Jahan Sadaf, Siddiqui Maqsood Ahmed, Khan Andleeb, Alshahrani Mohammed Merae, Badraoui Riadh, Adnan Mohd: Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Design. Mathematics 2023, 11, 1464. <https://doi.org/10.3390/math11061464>
  • Varillas-Delgado David, Del Coso Juan, Gutiérrez-Hellín Jorge, Aguilar-Navarro Millán, Muñoz Alejandro, Maestro Antonio, Morencos Esther: Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022, 122, 1811. <https://doi.org/10.1007/s00421-022-04945-z>
  • Kaur Ishleen, Doja M.N., Ahmad Tanvir: Data mining and machine learning in cancer survival research: An overview and future recommendations. Journal of Biomedical Informatics 2022, 128, 104026. <https://doi.org/10.1016/j.jbi.2022.104026>
  • Roman-Belmonte Juan M., De la Corte-Rodriguez Hortensia, Rodriguez-Merchan E. Carlos, Vazquez-Sasot Aranzazu, Rodriguez-Damiani Beatriz A., Resino-Luís Cristina, Sanchez-Laguna Francisco: The three horizons model applied to medical science. Postgraduate Medicine 2022, 134, 776. <https://doi.org/10.1080/00325481.2022.2124086>
  • Ke Zi-Rui, Chen Wei, Li Man-Xiu, Wu Shun, Jin Li-Ting, Wang Tie-Jun: Added value of systemic inflammation markers for monitoring response to neoadjuvant chemotherapy in breast cancer patients. WJCC 2022, 10, 3389. <https://doi.org/10.12998/wjcc.v10.i11.3389>
  • Gusev A.V., Vladzimirskiy A.V., Gavrilenko G.G.: Methodical approach and recommendations for scientific description of creation and validation of machine learning model. Med. Tech. Asses. and Choice 2022, 12. <https://doi.org/10.17116/medtech20224403112>
  • Huang Xue, Zhang Yukun, He Du, Lai Lin, Chen Jun, Zhang Tao, Mao Huilin: Machine Learning-Based Shear Wave Elastography Elastic Index (SWEEI) in Predicting Cervical Lymph Node Metastasis of Papillary Thyroid Microcarcinoma: A Comparative Analysis of Five Practical Prediction Models. CMAR 2022, Volume 14, 2847. <https://doi.org/10.2147/CMAR.S383152>
  • Xiong Fan, Cao Xuyong, Shi Xiaolin, Long Ze, Liu Yaosheng, Lei Mingxing: A machine learning–Based model to predict early death among bone metastatic breast cancer patients: A large cohort of 16,189 patients. Front. Cell Dev. Biol. 2022, 10. <https://doi.org/10.3389/fcell.2022.1059597>
  • Peng Yunsong, Cheng Ziliang, Gong Chang, Zheng Chushan, Zhang Xiang, Wu Zhuo, Yang Yaping, Yang Xiaodong, Zheng Jian, Shen Jun: Pretreatment DCE-MRI-Based Deep Learning Outperforms Radiomics Analysis in Predicting Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Front. Oncol. 2022, 12. <https://doi.org/10.3389/fonc.2022.846775>
  • Hanis Tengku Muhammad, Ruhaiyem Nur Intan Raihana, Arifin Wan Nor, Haron Juhara, Wan Abdul Rahman Wan Faiziah, Abdullah Rosni, Musa Kamarul Imran: Over-the-Counter Breast Cancer Classification Using Machine Learning and Patient Registration Records. Diagnostics 2022, 12, 2826. <https://doi.org/10.3390/diagnostics12112826>
  • Kang Jianguo, Yu Ziwang, Wu Shaohua, Zhang Yanjun, Gao Ping: Feasibility analysis of extreme learning machine for predicting thermal conductivity of rocks. Environ Earth Sci 2021, 80. <https://doi.org/10.1007/s12665-021-09745-w>
  • Kaur Ishleen, Doja M. N., Ahmad Tanvir, Ahmad Musheer, Hussain Amir, Nadeem Ahmed, Abd El-Latif Ahmed A., Doulamis Anastasios D.: An Integrated \u2009Approach for Cancer Survival Prediction Using Data Mining Techniques. Computational Intelligence and Neuroscience 2021, 2021, 1. <https://doi.org/10.1155/2021/6342226>
  • Li Jiaxin, Zhou Zijun, Dong Jianyu, Fu Ying, Li Yuan, Luan Ze, Peng Xin, Baltzer Pascal A. T.: Predicting breast cancer 5-year survival using machine learning: A systematic review. PLoS ONE 2021, 16, e0250370. <https://doi.org/10.1371/journal.pone.0250370>
  • Kalafi Elham Yousef, Jodeiri Ata, Setarehdan Seyed Kamaledin, Lin Ng Wei, Rahmat Kartini, Taib Nur Aishah, Ganggayah Mogana Darshini, Dhillon Sarinder Kaur: Classification of Breast Cancer Lesions in Ultrasound Images by Using Attention Layer and Loss Ensemble in Deep Convolutional Neural Networks. Diagnostics 2021, 11, 1859. <https://doi.org/10.3390/diagnostics11101859>
Crossref Cited-by Linking logo